IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i4p1202-d504341.html
   My bibliography  Save this article

Optimal Selection of Metering Points for Power Quality Measurements in Distribution System

Author

Listed:
  • Krzysztof Piatek

    (Department of Power Electronics and Energy Control Systems, AGH—University of Science and Technology, 30-059 Kraków, Poland)

  • Andrzej Firlit

    (Department of Power Electronics and Energy Control Systems, AGH—University of Science and Technology, 30-059 Kraków, Poland)

  • Krzysztof Chmielowiec

    (Department of Power Electronics and Energy Control Systems, AGH—University of Science and Technology, 30-059 Kraków, Poland)

  • Mateusz Dutka

    (Department of Power Electronics and Energy Control Systems, AGH—University of Science and Technology, 30-059 Kraków, Poland)

  • Szymon Barczentewicz

    (Department of Power Electronics and Energy Control Systems, AGH—University of Science and Technology, 30-059 Kraków, Poland)

  • Zbigniew Hanzelka

    (Department of Power Electronics and Energy Control Systems, AGH—University of Science and Technology, 30-059 Kraków, Poland)

Abstract

Quality of power supply in power distribution systems requires continuous measurement using power quality analyzers installed in the grid. The paper reviews the published methods for optimal location of metering points in distribution systems in the context of power quality metering and assessment. Three methods have been selected for detailed analysis and comparative tests. It has been found that utilization of the methods is possible, but their performance varies highly depending on the test grid’s topology. Since the methods rely on the state estimation approach, their performance is strictly related to observability analysis. It has been found that standard observability analysis used for typical state estimation problem yields ambiguous results when applied to power quality assessment. Inherited properties of the selected methods are also analyzed, which allows for the formulation of general recommendations about optimal selection of metering points in a distribution system.

Suggested Citation

  • Krzysztof Piatek & Andrzej Firlit & Krzysztof Chmielowiec & Mateusz Dutka & Szymon Barczentewicz & Zbigniew Hanzelka, 2021. "Optimal Selection of Metering Points for Power Quality Measurements in Distribution System," Energies, MDPI, vol. 14(4), pages 1-18, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:1202-:d:504341
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/4/1202/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/4/1202/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gomez-Gonzalez, M. & Hernandez, J.C. & Vera, D. & Jurado, F., 2020. "Optimal sizing and power schedule in PV household-prosumers for improving PV self-consumption and providing frequency containment reserve," Energy, Elsevier, vol. 191(C).
    2. Hernández, J.C. & Sanchez-Sutil, F. & Muñoz-Rodríguez, F.J., 2019. "Design criteria for the optimal sizing of a hybrid energy storage system in PV household-prosumers to maximize self-consumption and self-sufficiency," Energy, Elsevier, vol. 186(C).
    3. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Lin, Zhongwei & Fang, Fang & Chen, Qun, 2021. "Optimal operation of integrated electricity and heat system: A review of modeling and solution methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Yang Chen & Yao Zhang & Jianxue Wang & Zelong Lu, 2020. "Optimal Operation for Integrated Electricity–Heat System with Improved Heat Pump and Storage Model to Enhance Local Energy Utilization," Energies, MDPI, vol. 13(24), pages 1-23, December.
    5. Hernández, J.C. & Sanchez-Sutil, F. & Muñoz-Rodríguez, F.J. & Baier, C.R., 2020. "Optimal sizing and management strategy for PV household-prosumers with self-consumption/sufficiency enhancement and provision of frequency containment reserve," Applied Energy, Elsevier, vol. 277(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zhuo & Gladwin, Daniel T. & Smith, Matthew J. & Haass, Stefan, 2021. "Practical state estimation using Kalman filter methods for large-scale battery systems," Applied Energy, Elsevier, vol. 294(C).
    2. Attia, Ahmed M. & Al Hanbali, Ahmad & Saleh, Haitham H. & Alsawafy, Omar G. & Ghaithan, Ahmed M. & Mohammed, Awsan, 2021. "A multi-objective optimization model for sizing decisions of a grid-connected photovoltaic system," Energy, Elsevier, vol. 229(C).
    3. Zhang, Haifeng & Tian, Ming & Zhang, Cong & Wang, Bin & Wang, Dai, 2021. "A systematic solution to quantify economic values of vehicle grid integration," Energy, Elsevier, vol. 232(C).
    4. Breen, M. & Upton, J. & Murphy, M.D., 2020. "Photovoltaic systems on dairy farms: Financial and renewable multi-objective optimization (FARMOO) analysis," Applied Energy, Elsevier, vol. 278(C).
    5. Ching-Ming Lai & Jiashen Teh & Yuan-Chih Lin & Yitao Liu, 2020. "Study of a Bidirectional Power Converter Integrated with Battery/Ultracapacitor Dual-Energy Storage," Energies, MDPI, vol. 13(5), pages 1-23, March.
    6. Javier Parra-Domínguez & Esteban Sánchez & Ángel Ordóñez, 2023. "The Prosumer: A Systematic Review of the New Paradigm in Energy and Sustainable Development," Sustainability, MDPI, vol. 15(13), pages 1-44, July.
    7. Zhang, Wen-Yi & Chen, Yue & Wang, Yi & Xu, Yunjian, 2023. "Equilibrium analysis of a peer-to-peer energy trading market with shared energy storage in a power transmission grid," Energy, Elsevier, vol. 274(C).
    8. Gong, Yu & Liu, Pan & Liu, Yini & Huang, Kangdi, 2021. "Robust operation interval of a large-scale hydro-photovoltaic power system to cope with emergencies," Applied Energy, Elsevier, vol. 290(C).
    9. Jiang, Jianhua & Ming, Bo & Huang, Qiang & Guo, Yi & Shang, Jia’nan & Jurasz, Jakub & Liu, Pan, 2023. "A holistic techno-economic evaluation framework for sizing renewable power plant in a hydro-based hybrid generation system," Applied Energy, Elsevier, vol. 348(C).
    10. Fachrizal, Reza & Shepero, Mahmoud & Åberg, Magnus & Munkhammar, Joakim, 2022. "Optimal PV-EV sizing at solar powered workplace charging stations with smart charging schemes considering self-consumption and self-sufficiency balance," Applied Energy, Elsevier, vol. 307(C).
    11. Alessandro Ciocia & Angela Amato & Paolo Di Leo & Stefania Fichera & Gabriele Malgaroli & Filippo Spertino & Slavka Tzanova, 2021. "Self-Consumption and Self-Sufficiency in Photovoltaic Systems: Effect of Grid Limitation and Storage Installation," Energies, MDPI, vol. 14(6), pages 1-24, March.
    12. Kavian, Soheil & Aghanajafi, Cyrus & Jafari Mosleh, Hassan & Nazari, Arash & Nazari, Ashkan, 2020. "Exergy, economic and environmental evaluation of an optimized hybrid photovoltaic-geothermal heat pump system," Applied Energy, Elsevier, vol. 276(C).
    13. Zhao, Chunyang & Andersen, Peter Bach & Træholt, Chresten & Hashemi, Seyedmostafa, 2023. "Grid-connected battery energy storage system: a review on application and integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    14. Hernández, J.C. & Sanchez-Sutil, F. & Muñoz-Rodríguez, F.J. & Baier, C.R., 2020. "Optimal sizing and management strategy for PV household-prosumers with self-consumption/sufficiency enhancement and provision of frequency containment reserve," Applied Energy, Elsevier, vol. 277(C).
    15. Roshan Sharma & Masoud Karimi-Ghartemani, 2020. "Addressing Abrupt PV Disturbances, and Mitigating Net Load Profile’s Ramp and Peak Demands, Using Distributed Storage Devices," Energies, MDPI, vol. 13(5), pages 1-21, February.
    16. Milana Treshcheva & Irina Anikina & Vitaly Sergeev & Sergey Skulkin & Dmitry Treshchev, 2021. "Selection of Heat Pump Capacity Used at Thermal Power Plants under Electricity Market Operating Conditions," Energies, MDPI, vol. 14(1), pages 1-25, January.
    17. Yazhou Zhao & Xiangxi Qin & Xiangyu Shi, 2022. "A Comprehensive Evaluation Model on Optimal Operational Schedules for Battery Energy Storage System by Maximizing Self-Consumption Strategy and Genetic Algorithm," Sustainability, MDPI, vol. 14(14), pages 1-34, July.
    18. Liu, Jia & Chen, Xi & Yang, Hongxing & Li, Yutong, 2020. "Energy storage and management system design optimization for a photovoltaic integrated low-energy building," Energy, Elsevier, vol. 190(C).
    19. Mulleriyawage, U.G.K. & Shen, W.X., 2021. "Impact of demand side management on optimal sizing of residential battery energy storage system," Renewable Energy, Elsevier, vol. 172(C), pages 1250-1266.
    20. Yi, Tao & Cheng, Xiaobin & Chen, Yaxuan & Liu, Jinpeng, 2020. "Joint optimization of charging station and energy storage economic capacity based on the effect of alternative energy storage of electric vehicle," Energy, Elsevier, vol. 208(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:1202-:d:504341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.