IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i3p752-d490715.html
   My bibliography  Save this article

Fuzzy Control System for Smart Energy Management in Residential Buildings Based on Environmental Data

Author

Listed:
  • Dimitrios Kontogiannis

    (Department of Electrical and Computer Engineering, University of Thessaly, 38221 Volos, Greece)

  • Dimitrios Bargiotas

    (Department of Electrical and Computer Engineering, University of Thessaly, 38221 Volos, Greece)

  • Aspassia Daskalopulu

    (Department of Electrical and Computer Engineering, University of Thessaly, 38221 Volos, Greece)

Abstract

Modern energy automation solutions and demand response applications rely on load profiles to monitor and manage electricity consumption effectively. The introduction of smart control systems capable of handling additional fuzzy parameters, such as weather data, through machine learning methods, offers valuable insights in an attempt to adjust consumer behavior optimally. Following recent advances in the field of fuzzy control, this study presents the design and implementation of a fuzzy control system that processes environmental data in order to recommend minimum energy consumption values for a residential building. This system follows the forward chaining Mamdani approach and uses decision tree linearization for rule generation. Additionally, a hybrid feature selector is implemented based on XGBoost and decision tree metrics for feature importance. The proposed structure discovers and generates a small set of fuzzy rules that highlights the energy consumption behavior of the building based on time-series data of past operation. The response of the fuzzy system based on sample input data is presented, and the evaluation of its performance shows that the rule base generation is derived with improved accuracy. In addition, an overall smaller set of rules is generated, and the computation is faster compared to the baseline decision tree configuration.

Suggested Citation

  • Dimitrios Kontogiannis & Dimitrios Bargiotas & Aspassia Daskalopulu, 2021. "Fuzzy Control System for Smart Energy Management in Residential Buildings Based on Environmental Data," Energies, MDPI, vol. 14(3), pages 1-18, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:752-:d:490715
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/3/752/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/3/752/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Suganthi, L. & Iniyan, S. & Samuel, Anand A., 2015. "Applications of fuzzy logic in renewable energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 585-607.
    2. Sébastien Bissey & Sébastien Jacques & Jean-Charles Le Bunetel, 2017. "The Fuzzy Logic Method to Efficiently Optimize Electricity Consumption in Individual Housing," Energies, MDPI, vol. 10(11), pages 1-24, October.
    3. Waqas Ahmad & Nasir Ayub & Tariq Ali & Muhammad Irfan & Muhammad Awais & Muhammad Shiraz & Adam Glowacz, 2020. "Towards Short Term Electricity Load Forecasting Using Improved Support Vector Machine and Extreme Learning Machine," Energies, MDPI, vol. 13(11), pages 1-17, June.
    4. Rong Zhang & Baabak Ashuri & Yong Deng, 2017. "A novel method for forecasting time series based on fuzzy logic and visibility graph," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(4), pages 759-783, December.
    5. Segismundo S. Izquierdo & Luis R. Izquierdo, 2018. "Mamdani Fuzzy Systems for Modelling and Simulation: A Critical Assessment," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 21(3), pages 1-2.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jonas Sievers & Thomas Blank, 2023. "A Systematic Literature Review on Data-Driven Residential and Industrial Energy Management Systems," Energies, MDPI, vol. 16(4), pages 1-21, February.
    2. Isaías Gomes & Karol Bot & Maria Graça Ruano & António Ruano, 2022. "Recent Techniques Used in Home Energy Management Systems: A Review," Energies, MDPI, vol. 15(8), pages 1-41, April.
    3. Alvaro Llaria & Jessye Dos Santos & Guillaume Terrasson & Zina Boussaada & Christophe Merlo & Octavian Curea, 2021. "Intelligent Buildings in Smart Grids: A Survey on Security and Privacy Issues Related to Energy Management," Energies, MDPI, vol. 14(9), pages 1-37, May.
    4. Anastasios I. Dounis, 2022. "Machine Intelligence in Smart Buildings," Energies, MDPI, vol. 16(1), pages 1-5, December.
    5. Jie Yao & Feng Wu, 2022. "Cloud automatic mechanical equipment based on D–T fuzzy control and internet of things," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(4), pages 1696-1704, August.
    6. Ayman A. Aly & Bassem F. Felemban & Ardashir Mohammadzadeh & Oscar Castillo & Andrzej Bartoszewicz, 2021. "Frequency Regulation System: A Deep Learning Identification, Type-3 Fuzzy Control and LMI Stability Analysis," Energies, MDPI, vol. 14(22), pages 1-21, November.
    7. Dimitrios Kontogiannis & Dimitrios Bargiotas & Aspassia Daskalopulu & Lefteri H. Tsoukalas, 2021. "A Meta-Modeling Power Consumption Forecasting Approach Combining Client Similarity and Causality," Energies, MDPI, vol. 14(19), pages 1-19, September.
    8. Athanasios Ioannis Arvanitidis & Dimitrios Bargiotas & Aspassia Daskalopulu & Dimitrios Kontogiannis & Ioannis P. Panapakidis & Lefteri H. Tsoukalas, 2022. "Clustering Informed MLP Models for Fast and Accurate Short-Term Load Forecasting," Energies, MDPI, vol. 15(4), pages 1-14, February.
    9. Dimitrios K. Panagiotou & Anastasios I. Dounis, 2022. "Comparison of Hospital Building’s Energy Consumption Prediction Using Artificial Neural Networks, ANFIS, and LSTM Network," Energies, MDPI, vol. 15(17), pages 1-25, September.
    10. Athanasios Ioannis Arvanitidis & Dimitrios Bargiotas & Aspassia Daskalopulu & Vasileios M. Laitsos & Lefteri H. Tsoukalas, 2021. "Enhanced Short-Term Load Forecasting Using Artificial Neural Networks," Energies, MDPI, vol. 14(22), pages 1-14, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bingjie Jin & Guihua Zeng & Zhilin Lu & Hongqiao Peng & Shuxin Luo & Xinhe Yang & Haojun Zhu & Mingbo Liu, 2022. "Hybrid LSTM–BPNN-to-BPNN Model Considering Multi-Source Information for Forecasting Medium- and Long-Term Electricity Peak Load," Energies, MDPI, vol. 15(20), pages 1-20, October.
    2. Al-Falahi, Monaaf D.A. & Jayasinghe, Shantha D.G. & Enshaei, Hossein, 2019. "Hybrid algorithm for optimal operation of hybrid energy systems in electric ferries," Energy, Elsevier, vol. 187(C).
    3. Dong-Rui Chen & Chuang Liu & Yi-Cheng Zhang & Zi-Ke Zhang, 2019. "Predicting Financial Extremes Based on Weighted Visual Graph of Major Stock Indices," Complexity, Hindawi, vol. 2019, pages 1-17, October.
    4. Hannan, M.A. & Ali, Jamal A. & Mohamed, Azah & Hussain, Aini, 2018. "Optimization techniques to enhance the performance of induction motor drives: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1611-1626.
    5. Konstantinos Sofias & Zoe Kanetaki & Constantinos Stergiou & Sébastien Jacques, 2023. "Combining CAD Modeling and Simulation of Energy Performance Data for the Retrofit of Public Buildings," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    6. Kara Mostefa Khelil, Chérifa & Amrouche, Badia & Benyoucef, Abou soufiane & Kara, Kamel & Chouder, Aissa, 2020. "New Intelligent Fault Diagnosis (IFD) approach for grid-connected photovoltaic systems," Energy, Elsevier, vol. 211(C).
    7. Andrey Privalov & Vera Lukicheva & Igor Kotenko & Igor Saenko, 2020. "Increasing the Sensitivity of the Method of Early Detection of Cyber-Attacks in Telecommunication Networks Based on Traffic Analysis by Extreme Filtering," Energies, MDPI, vol. 13(11), pages 1-18, June.
    8. Md Alamgir Hossain & Hemanshu Roy Pota & Walid Issa & Md Jahangir Hossain, 2017. "Overview of AC Microgrid Controls with Inverter-Interfaced Generations," Energies, MDPI, vol. 10(9), pages 1-27, August.
    9. Burgaç, Alper & Yavuz, Hakan, 2019. "Fuzzy Logic based hybrid type control implementation of a heaving wave energy converter," Energy, Elsevier, vol. 170(C), pages 1202-1214.
    10. Kumar, Rajesh & Agarwala, Arun, 2016. "Renewable energy technology diffusion model for techno-economics feasibility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1515-1524.
    11. Hossein Shayeghi & Elnaz Shahryari & Mohammad Moradzadeh & Pierluigi Siano, 2019. "A Survey on Microgrid Energy Management Considering Flexible Energy Sources," Energies, MDPI, vol. 12(11), pages 1-26, June.
    12. Nie, S. & Huang, Charley Z. & Huang, G.H. & Li, Y.P. & Chen, J.P. & Fan, Y.R. & Cheng, G.H., 2016. "Planning renewable energy in electric power system for sustainable development under uncertainty – A case study of Beijing," Applied Energy, Elsevier, vol. 162(C), pages 772-786.
    13. Zhang, Kai & Li, Jingzhi & He, Zhubin & Yan, Wanfeng, 2018. "Microgrid energy dispatching for industrial zones with renewable generations and electric vehicles via stochastic optimization and learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 356-369.
    14. Qiangqiang Cheng & Yiqi Yan & Shichao Liu & Chunsheng Yang & Hicham Chaoui & Mohamad Alzayed, 2020. "Particle Filter-Based Electricity Load Prediction for Grid-Connected Microgrid Day-Ahead Scheduling," Energies, MDPI, vol. 13(24), pages 1-15, December.
    15. Athanasios Kolios & Varvara Mytilinou & Estivaliz Lozano-Minguez & Konstantinos Salonitis, 2016. "A Comparative Study of Multiple-Criteria Decision-Making Methods under Stochastic Inputs," Energies, MDPI, vol. 9(7), pages 1-21, July.
    16. Nebiyu Kedir & Phuong H. D. Nguyen & Citlaly Pérez & Pedro Ponce & Aminah Robinson Fayek, 2023. "Systematic Literature Review on Fuzzy Hybrid Methods in Photovoltaic Solar Energy: Opportunities, Challenges, and Guidance for Implementation," Energies, MDPI, vol. 16(9), pages 1-38, April.
    17. Mustapha Habib & Elmar Bollin & Qian Wang, 2023. "Battery Energy Management System Using Edge-Driven Fuzzy Logic," Energies, MDPI, vol. 16(8), pages 1-18, April.
    18. Rivero-Iglesias, Jose M. & Puente, Javier & Fernandez, Isabel & León, Omar, 2023. "Integrated model for the assessment of power generation alternatives through analytic hierarchy process and a fuzzy inference system. Case study of Spain," Renewable Energy, Elsevier, vol. 211(C), pages 563-581.
    19. Kumar, N.J. Vinoth & Thameem Ansari, M. Mohamed, 2015. "A new design of dual-mode Type-II fuzzy logic load frequency controller for interconnected power systems with parallel AC–DC tie-lines and superconducting magnetic energy storage unit," Energy, Elsevier, vol. 89(C), pages 118-137.
    20. Rodríguez-López, Miguel A. & López-González, Luis M. & López-Ochoa, Luis M. & Las-Heras-Casas, Jesús, 2016. "Development of indicators for the detection of equipment malfunctions and degradation estimation based on digital signals (alarms and events) from operation SCADA," Renewable Energy, Elsevier, vol. 99(C), pages 224-236.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:752-:d:490715. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.