IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i3p581-d485859.html
   My bibliography  Save this article

Energy Management System of DC Microgrid in Grid-Connected and Stand-Alone Modes: Control, Operation and Experimental Validation

Author

Listed:
  • Hoon Lee

    (Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea)

  • Jin-Wook Kang

    (Hanwah Defense Inc., Seongnam 13488, Korea)

  • Bong-Yeon Choi

    (Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea)

  • Kyung-Min Kang

    (Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea)

  • Mi-Na Kim

    (Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea)

  • Chang-Gyun An

    (Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea)

  • Junsin Yi

    (Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea)

  • Chung-Yuen Won

    (Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea)

Abstract

This paper proposes an energy management system (EMS) of direct current (DC) microgrid. In order to implement the proposed EMS, the control and operation method of EMS is presented in this work. While most of the studies have individually examined the grid-connected mode used in building and the stand-alone operation mode applicable to the island, the proposed EMS allows it to be used in both grid-connected mode and stand-alone mode with 10 modes. In order to determine each mode in EMS, not only the amount of generated power, load power, and the state of charge (SOC) of the battery, but also the rated power of the energy storage system (ESS) converter that performs charging and discharging operations is additionally considered. Thus, various uncertainties that may occur in the actual DC microgrid environment can be improved. A laboratory-scale DC microgrid is fabricated to conduct experimental validation of proposed EMS. Experiments of DC microgrid with proposed EMS were performed for each mode, and the experiment waveforms of each power conversion device are included in detail.

Suggested Citation

  • Hoon Lee & Jin-Wook Kang & Bong-Yeon Choi & Kyung-Min Kang & Mi-Na Kim & Chang-Gyun An & Junsin Yi & Chung-Yuen Won, 2021. "Energy Management System of DC Microgrid in Grid-Connected and Stand-Alone Modes: Control, Operation and Experimental Validation," Energies, MDPI, vol. 14(3), pages 1-26, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:581-:d:485859
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/3/581/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/3/581/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hua Han & Lang Li & Lina Wang & Mei Su & Yue Zhao & Josep M. Guerrero, 2017. "A Novel Decentralized Economic Operation in Islanded AC Microgrids," Energies, MDPI, vol. 10(6), pages 1-18, June.
    2. Anjan Debnath & Temitayo O. Olowu & Imtiaz Parvez & Md Golam Dastgir & Arif Sarwat, 2020. "A Novel Module Independent Straight Line-Based Fast Maximum Power Point Tracking Algorithm for Photovoltaic Systems," Energies, MDPI, vol. 13(12), pages 1-15, June.
    3. Alfredo Padilla-Medina & Francisco Perez-Pinal & Alonso Jimenez-Garibay & Antonio Vazquez-Lopez & Juan Martinez-Nolasco, 2020. "Design and Implementation of an Energy-Management System for a Grid-Connected Residential DC Microgrid," Energies, MDPI, vol. 13(16), pages 1-30, August.
    4. Saeed Mian Qaisar, 2020. "Event-Driven Coulomb Counting for Effective Online Approximation of Li-Ion Battery State of Charge," Energies, MDPI, vol. 13(21), pages 1-20, October.
    5. Mostafa Kermani & Domenico Luca Carnì & Sara Rotondo & Aurelio Paolillo & Francesco Manzo & Luigi Martirano, 2020. "A Nearly Zero-Energy Microgrid Testbed Laboratory: Centralized Control Strategy Based on SCADA System," Energies, MDPI, vol. 13(8), pages 1-15, April.
    6. Nadia Ahmed & Marco Levorato & Roberto Valentini & Guann-Pyng Li, 2020. "Data Driven Optimization of Energy Management in Residential Buildings with Energy Harvesting and Storage," Energies, MDPI, vol. 13(9), pages 1-18, May.
    7. Sarah Ouédraogo & Ghjuvan Antone Faggianelli & Guillaume Pigelet & Jean Laurent Duchaud & Gilles Notton, 2020. "Application of Optimal Energy Management Strategies for a Building Powered by PV/Battery System in Corsica Island," Energies, MDPI, vol. 13(17), pages 1-20, September.
    8. Umberto Berardi & Elisa Tomassoni & Khaled Khaled, 2020. "A Smart Hybrid Energy System Grid for Energy Efficiency in Remote Areas for the Army," Energies, MDPI, vol. 13(9), pages 1-22, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed H. EL-Ebiary & Mohamed Mokhtar & Atef M. Mansour & Fathy H. Awad & Mostafa I. Marei & Mahmoud A. Attia, 2022. "Distributed Mitigation Layers for Voltages and Currents Cyber-Attacks on DC Microgrids Interfacing Converters," Energies, MDPI, vol. 15(24), pages 1-32, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kang, Hyuna & Jung, Seunghoon & Lee, Minhyun & Hong, Taehoon, 2022. "How to better share energy towards a carbon-neutral city? A review on application strategies of battery energy storage system in city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Yanfeng Liu & Yaxing Wang & Xi Luo, 2020. "Design and Operation Optimization of Distributed Solar Energy System Based on Dynamic Operation Strategy," Energies, MDPI, vol. 14(1), pages 1-26, December.
    3. Goldsworthy, M. & Moore, T. & Peristy, M. & Grimeland, M., 2022. "Cloud-based model-predictive-control of a battery storage system at a commercial site," Applied Energy, Elsevier, vol. 327(C).
    4. Van Quan Dao & Minh-Chau Dinh & Chang Soon Kim & Minwon Park & Chil-Hoon Doh & Jeong Hyo Bae & Myung-Kwan Lee & Jianyong Liu & Zhiguo Bai, 2021. "Design of an Effective State of Charge Estimation Method for a Lithium-Ion Battery Pack Using Extended Kalman Filter and Artificial Neural Network," Energies, MDPI, vol. 14(9), pages 1-20, May.
    5. Vitor Fernão Pires & Armando Pires & Armando Cordeiro, 2023. "DC Microgrids: Benefits, Architectures, Perspectives and Challenges," Energies, MDPI, vol. 16(3), pages 1-20, January.
    6. Yasir Basheer & Asad Waqar & Saeed Mian Qaisar & Toqeer Ahmed & Nasim Ullah & Sattam Alotaibi, 2022. "Analyzing the Prospect of Hybrid Energy in the Cement Industry of Pakistan, Using HOMER Pro," Sustainability, MDPI, vol. 14(19), pages 1-24, September.
    7. Sri Sarjana & Joko Rizkie Widokarti & Helman Fachri & Diaz Pranita, 2022. "Hybrid Energy to Drive Renewable Energy Diversity in Bibliometric Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 12(1), pages 500-506.
    8. Hajra Khan & Imran Fareed Nizami & Saeed Mian Qaisar & Asad Waqar & Moez Krichen & Abdulaziz Turki Almaktoom, 2022. "Analyzing Optimal Battery Sizing in Microgrids Based on the Feature Selection and Machine Learning Approaches," Energies, MDPI, vol. 15(21), pages 1-22, October.
    9. David Borge-Diez, 2022. "Advanced Energy Efficiency Systems in Buildings," Energies, MDPI, vol. 15(19), pages 1-3, October.
    10. Zamani Gargari, Milad & Tarafdar Hagh, Mehrdad & Ghassem Zadeh, Saeid, 2023. "Preventive scheduling of a multi-energy microgrid with mobile energy storage to enhance the resiliency of the system," Energy, Elsevier, vol. 263(PC).
    11. Mei Su & Chao Luo & Xiaochao Hou & Wenbin Yuan & Zhangjie Liu & Hua Han & Josep M. Guerrero, 2018. "A Communication-Free Decentralized Control for Grid-Connected Cascaded PV Inverters," Energies, MDPI, vol. 11(6), pages 1-18, May.
    12. Jean-Michel Clairand & Javier Rodríguez-García & Carlos Álvarez-Bel, 2018. "Electric Vehicle Charging Strategy for Isolated Systems with High Penetration of Renewable Generation," Energies, MDPI, vol. 11(11), pages 1-21, November.
    13. Abdellatif Elmouatamid & Radouane Ouladsine & Mohamed Bakhouya & Najib El Kamoun & Mohammed Khaidar & Khalid Zine-Dine, 2020. "Review of Control and Energy Management Approaches in Micro-Grid Systems," Energies, MDPI, vol. 14(1), pages 1-30, December.
    14. Muhammad Mateen Afzal Awan & Muhammad Yaqoob Javed & Aamer Bilal Asghar & Krzysztof Ejsmont, 2022. "Performance Optimization of a Ten Check MPPT Algorithm for an Off-Grid Solar Photovoltaic System," Energies, MDPI, vol. 15(6), pages 1-31, March.
    15. Ayman Al-Quraan & Muhannad Al-Qaisi, 2021. "Modelling, Design and Control of a Standalone Hybrid PV-Wind Micro-Grid System," Energies, MDPI, vol. 14(16), pages 1-23, August.
    16. Haolan Liang & Zhangjie Liu & Hua Liu, 2019. "Stabilization Method Considering Disturbance Mitigation for DC Microgrids with Constant Power Loads," Energies, MDPI, vol. 12(5), pages 1-19, March.
    17. Gianfranco Di Lorenzo & Erika Stracqualursi & Rodolfo Araneo, 2022. "The Journey Towards the Energy Transition: Perspectives from the International Conference on Environment and Electrical Engineering (EEEIC)," Energies, MDPI, vol. 15(18), pages 1-5, September.
    18. Tae-Gyu Kim & Hoon Lee & Chang-Gyun An & Junsin Yi & Chung-Yuen Won, 2023. "Hybrid AC/DC Microgrid Energy Management Strategy Based on Two-Step ANN," Energies, MDPI, vol. 16(4), pages 1-23, February.
    19. Moez Krichen & Yasir Basheer & Saeed Mian Qaisar & Asad Waqar, 2023. "A Survey on Energy Storage: Techniques and Challenges," Energies, MDPI, vol. 16(5), pages 1-29, February.
    20. Mostafa Kermani & Erfan Shirdare & Saram Abbasi & Giuseppe Parise & Luigi Martirano, 2021. "Elevator Regenerative Energy Applications with Ultracapacitor and Battery Energy Storage Systems in Complex Buildings," Energies, MDPI, vol. 14(11), pages 1-16, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:581-:d:485859. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.