IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2022i1p346-d1017905.html
   My bibliography  Save this article

A Composite Exponential Reaching Law Based SMC with Rotating Sliding Surface Selection Mechanism for Two Level Three Phase VSI in Vehicle to Load Applications

Author

Listed:
  • Faheem Haroon

    (Department of Electrical Engineering, Bahria School of Engineering and Applied Sciences Islamabad Campus (BSEAS-IC), Islamabad 44000, Pakistan)

  • Muhammad Aamir

    (Pak-Austria Fachhochschule Institute of Applied Sciences and Technology, Haripur 22620, Pakistan)

  • Asad Waqar

    (Department of Electrical Engineering, Bahria School of Engineering and Applied Sciences Islamabad Campus (BSEAS-IC), Islamabad 44000, Pakistan)

  • Saeed Mian Qaisar

    (Electrical and Computer Engineering Department, Effat University, Jeddah 22332, Saudi Arabia
    Communication and Signal Processing Lab, Energy and Technology Research Center, Effat University, Jeddah 22332, Saudi Arabia)

  • Syed Umaid Ali

    (Department of Electrical Engineering, Bahria School of Engineering and Applied Sciences Islamabad Campus (BSEAS-IC), Islamabad 44000, Pakistan)

  • Abdulaziz Turki Almaktoom

    (Supply Chain Management Department, Effat University, Jeddah 22332, Saudi Arabia)

Abstract

Voltage source inverters (VSIs) are an integral part of electrical vehicles (EVs) to enhance the reliability of the supply power to critical loads in vehicle to load (V2L) applications. The inherent properties of sliding mode control (SMC) makes it one of the best available options to achieve the desired voltage quality under variable load conditions. The intrinsic characteristic of robustness associated with SMC is generally achieved at the cost of unwanted chattering along the sliding surface. To manage this compromise better, optimal selection of sliding surface coefficient is applied with the proposed composite exponential reaching law (C-ERL). The novelty of the proposed C-ERL is associated with the intelligent mix of the exponential, power, and difference functions blended with the rotating sliding surface selection (RSS) technique for three phase two level VSI. Moreover, the proposed reaching law along with the power rate exponential reaching law (PRERL), enhanced exponential reaching law (EERL), and repetitive reaching law (RRL) were implemented on two level three phase VSI under variable load conditions. A comparative analysis strongly advocates the authenticity and effectiveness of the proposed reaching law in achieving a well-regulated output voltage with a high level of robustness, reduced chattering, and low %THD.

Suggested Citation

  • Faheem Haroon & Muhammad Aamir & Asad Waqar & Saeed Mian Qaisar & Syed Umaid Ali & Abdulaziz Turki Almaktoom, 2022. "A Composite Exponential Reaching Law Based SMC with Rotating Sliding Surface Selection Mechanism for Two Level Three Phase VSI in Vehicle to Load Applications," Energies, MDPI, vol. 16(1), pages 1-20, December.
  • Handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:346-:d:1017905
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/346/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/346/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saeed Mian Qaisar, 2020. "Event-Driven Coulomb Counting for Effective Online Approximation of Li-Ion Battery State of Charge," Energies, MDPI, vol. 13(21), pages 1-20, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gianfranco Di Lorenzo & Erika Stracqualursi & Rodolfo Araneo, 2022. "The Journey Towards the Energy Transition: Perspectives from the International Conference on Environment and Electrical Engineering (EEEIC)," Energies, MDPI, vol. 15(18), pages 1-5, September.
    2. Van Quan Dao & Minh-Chau Dinh & Chang Soon Kim & Minwon Park & Chil-Hoon Doh & Jeong Hyo Bae & Myung-Kwan Lee & Jianyong Liu & Zhiguo Bai, 2021. "Design of an Effective State of Charge Estimation Method for a Lithium-Ion Battery Pack Using Extended Kalman Filter and Artificial Neural Network," Energies, MDPI, vol. 14(9), pages 1-20, May.
    3. Moez Krichen & Yasir Basheer & Saeed Mian Qaisar & Asad Waqar, 2023. "A Survey on Energy Storage: Techniques and Challenges," Energies, MDPI, vol. 16(5), pages 1-29, February.
    4. Hoon Lee & Jin-Wook Kang & Bong-Yeon Choi & Kyung-Min Kang & Mi-Na Kim & Chang-Gyun An & Junsin Yi & Chung-Yuen Won, 2021. "Energy Management System of DC Microgrid in Grid-Connected and Stand-Alone Modes: Control, Operation and Experimental Validation," Energies, MDPI, vol. 14(3), pages 1-26, January.
    5. Yasir Basheer & Asad Waqar & Saeed Mian Qaisar & Toqeer Ahmed & Nasim Ullah & Sattam Alotaibi, 2022. "Analyzing the Prospect of Hybrid Energy in the Cement Industry of Pakistan, Using HOMER Pro," Sustainability, MDPI, vol. 14(19), pages 1-24, September.
    6. Hajra Khan & Imran Fareed Nizami & Saeed Mian Qaisar & Asad Waqar & Moez Krichen & Abdulaziz Turki Almaktoom, 2022. "Analyzing Optimal Battery Sizing in Microgrids Based on the Feature Selection and Machine Learning Approaches," Energies, MDPI, vol. 15(21), pages 1-22, October.
    7. Farah Mohammad & Kashif Saleem & Jalal Al-Muhtadi, 2023. "Ensemble-Learning-Based Decision Support System for Energy-Theft Detection in Smart-Grid Environment," Energies, MDPI, vol. 16(4), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:346-:d:1017905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.