IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p4849-d610978.html
   My bibliography  Save this article

Modelling, Design and Control of a Standalone Hybrid PV-Wind Micro-Grid System

Author

Listed:
  • Ayman Al-Quraan

    (Electrical Power Engineering Department, Yarmouk University, Irbid 21163, Jordan)

  • Muhannad Al-Qaisi

    (Electrical Power Engineering Department, Yarmouk University, Irbid 21163, Jordan)

Abstract

The problem of electrical power delivery is a common problem, especially in remote areas where electrical networks are difficult to reach. One of the ways that is used to overcome this problem is the use of networks separated from the electrical system through which it is possible to supply electrical energy to remote areas. These networks are called standalone microgrid systems. In this paper, a standalone micro-grid system consisting of a Photovoltaic (PV) and Wind Energy Conversion System (WECS) based Permanent Magnet Synchronous Generator (PMSG) is being designed and controlled. Fuzzy logic-based Maximum Power Point Tracking (MPPT) is being applied to a boost converter to control and extract the maximum power available for the PV system. The control system is designed to deliver the required energy to a specific load, in all scenarios. The excess energy generated by the PV panel is used to charge the batteries when the energy generated by the PV panel exceeds the energy required by the load. When the electricity generated by the PV panels is insufficient to meet the load’s demands, the extra power is extracted from the charged batteries. In addition, the controller protects the battery banks in all conditions, including normal, overcharging, and overdischarging conditions. The controller should handle each case correctly. Under normal operation conditions (20% < State of Charge (SOC) < 80%), the controller functions as expected, regardless of the battery’s state of charge. When the SOC reaches 80%, a specific command is delivered, which shuts off the PV panel and the wind turbine. The PV panel and wind turbine cannot be connected until the SOC falls below a safe margin value of 75% in this controller. When the SOC goes below 20%, other commands are sent out to turn off the inverter and disconnect the loads. The electricity to the inverter is turned off until the batteries are charged again to a suitable value.

Suggested Citation

  • Ayman Al-Quraan & Muhannad Al-Qaisi, 2021. "Modelling, Design and Control of a Standalone Hybrid PV-Wind Micro-Grid System," Energies, MDPI, vol. 14(16), pages 1-23, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4849-:d:610978
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/4849/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/4849/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tengfei Zhang & Dong Yue & Michael J. O’Grady & Gregory M. P. O’Hare, 2015. "Transient Oscillations Analysis and Modified Control Strategy for Seamless Mode Transfer in Micro-Grids: A Wind-PV-ES Hybrid System Case Study," Energies, MDPI, vol. 8(12), pages 1-20, December.
    2. Bilal Naji Alhasnawi & Basil H. Jasim & M. Dolores Esteban, 2020. "A New Robust Energy Management and Control Strategy for a Hybrid Microgrid System Based on Green Energy," Sustainability, MDPI, vol. 12(14), pages 1-28, July.
    3. Rajvikram Madurai Elavarasan & Aritra Ghosh & Tapas K. Mallick & Apoorva Krishnamurthy & Meenal Saravanan, 2019. "Investigations on Performance Enhancement Measures of the Bidirectional Converter in PV–Wind Interconnected Microgrid System," Energies, MDPI, vol. 12(14), pages 1-22, July.
    4. Mohamed El-Hendawi & Hossam A. Gabbar & Gaber El-Saady & El-Nobi A. Ibrahim, 2018. "Control and EMS of a Grid-Connected Microgrid with Economical Analysis," Energies, MDPI, vol. 11(1), pages 1-20, January.
    5. Chin-Hsing Cheng, 2016. "Implementation of a Small Type DC Microgrid Based on Fuzzy Control and Dynamic Programming," Energies, MDPI, vol. 9(10), pages 1-12, September.
    6. Hussein M. K. Al-Masri & Ayman Al-Quraan & Ahmad AbuElrub & Mehrdad Ehsani, 2019. "Optimal Coordination of Wind Power and Pumped Hydro Energy Storage," Energies, MDPI, vol. 12(22), pages 1-15, November.
    7. Ben Ali, I. & Turki, M. & Belhadj, J. & Roboam, X., 2018. "Optimized fuzzy rule-based energy management for a battery-less PV/wind-BWRO desalination system," Energy, Elsevier, vol. 159(C), pages 216-228.
    8. Grace Muriithi & Sunetra Chowdhury, 2021. "Optimal Energy Management of a Grid-Tied Solar PV-Battery Microgrid: A Reinforcement Learning Approach," Energies, MDPI, vol. 14(9), pages 1-24, May.
    9. Mehrdad Beykverdi & Abolfazl Jalilvand & Mehdi Ehsan, 2016. "Cooperative Energy Management of Hybrid DC Renewable Grid Using Decentralized Control Strategies," Energies, MDPI, vol. 9(11), pages 1-18, October.
    10. Nadjemi, O. & Nacer, T. & Hamidat, A. & Salhi, H., 2017. "Optimal hybrid PV/wind energy system sizing: Application of cuckoo search algorithm for Algerian dairy farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1352-1365.
    11. Umberto Berardi & Elisa Tomassoni & Khaled Khaled, 2020. "A Smart Hybrid Energy System Grid for Energy Efficiency in Remote Areas for the Army," Energies, MDPI, vol. 13(9), pages 1-22, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daud Mustafa Minhas & Josef Meiers & Georg Frey, 2022. "Electric Vehicle Battery Storage Concentric Intelligent Home Energy Management System Using Real Life Data Sets," Energies, MDPI, vol. 15(5), pages 1-29, February.
    2. Prabu Subramani & Sugadev Mani & Wen-Cheng Lai & Dineshkumar Ramamurthy, 2022. "Sustainable Energy Management and Control for Variable Load Conditions Using Improved Mayfly Optimization," Sustainability, MDPI, vol. 14(11), pages 1-22, May.
    3. Ayman Al-Quraan & Mohammed Al-Mahmodi & Khaled Alzaareer & Claude El-Bayeh & Ursula Eicker, 2022. "Minimizing the Utilized Area of PV Systems by Generating the Optimal Inter-Row Spacing Factor," Sustainability, MDPI, vol. 14(10), pages 1-15, May.
    4. Mohamed Derbeli & Cristian Napole & Oscar Barambones & Jesus Sanchez & Isidro Calvo & Pablo Fernández-Bustamante, 2021. "Maximum Power Point Tracking Techniques for Photovoltaic Panel: A Review and Experimental Applications," Energies, MDPI, vol. 14(22), pages 1-31, November.
    5. Ayman Al-Quraan & Bashar Al-Mhairat, 2022. "Intelligent Optimized Wind Turbine Cost Analysis for Different Wind Sites in Jordan," Sustainability, MDPI, vol. 14(5), pages 1-24, March.
    6. Ayman Al-Quraan & Bashar Al-Mhairat & Ahmad M. A. Malkawi & Ashraf Radaideh & Hussein M. K. Al-Masri, 2023. "Optimal Prediction of Wind Energy Resources Based on WOA—A Case Study in Jordan," Sustainability, MDPI, vol. 15(5), pages 1-23, February.
    7. Stanisław Chudzik, 2023. "Wind Microturbine with Adjustable Blade Pitch Angle," Energies, MDPI, vol. 16(2), pages 1-16, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Zhang & Tian Lan & Wei Hu, 2023. "A Two-Stage Robust Optimization Microgrid Model Considering Carbon Trading and Demand Response," Sustainability, MDPI, vol. 15(19), pages 1-22, October.
    2. Zhang, Zhonglian & Yang, Xiaohui & Li, Moxuan & Deng, Fuwei & Xiao, Riying & Mei, Linghao & Hu, Zecheng, 2023. "Optimal configuration of improved dynamic carbon neutral energy systems based on hybrid energy storage and market incentives," Energy, Elsevier, vol. 284(C).
    3. Yanfeng Liu & Yaxing Wang & Xi Luo, 2020. "Design and Operation Optimization of Distributed Solar Energy System Based on Dynamic Operation Strategy," Energies, MDPI, vol. 14(1), pages 1-26, December.
    4. Miloud Rezkallah & Sanjeev Singh & Ambrish Chandra & Bhim Singh & Hussein Ibrahim, 2020. "Off-Grid System Configurations for Coordinated Control of Renewable Energy Sources," Energies, MDPI, vol. 13(18), pages 1-25, September.
    5. Olanrewaju Lasabi & Andrew Swanson & Leigh Jarvis & Anuoluwapo Aluko & Arman Goudarzi, 2024. "Coordinated Hybrid Approach Based on Firefly Algorithm and Particle Swarm Optimization for Distributed Secondary Control and Stability Analysis of Direct Current Microgrids," Sustainability, MDPI, vol. 16(3), pages 1-28, January.
    6. Fathy, Ahmed, 2023. "Bald eagle search optimizer-based energy management strategy for microgrid with renewable sources and electric vehicles," Applied Energy, Elsevier, vol. 334(C).
    7. Ren, Haoshan & Ma, Zhenjun & Fai Norman Tse, Chung & Sun, Yongjun, 2022. "Optimal control of solar-powered electric bus networks with improved renewable energy on-site consumption and reduced grid dependence," Applied Energy, Elsevier, vol. 323(C).
    8. Deepika Bishnoi & Harsh Chaturvedi, 2022. "Optimal Design of a Hybrid Energy System for Economic and Environmental Sustainability of Onshore Oil and Gas Fields," Energies, MDPI, vol. 15(6), pages 1-21, March.
    9. Igor Ansoategui & Ekaitz Zulueta & Unai Fernandez-Gamiz & Jose Manuel Lopez-Guede, 2019. "Mechatronic Modeling and Frequency Analysis of the Drive Train of a Horizontal Wind Turbine," Energies, MDPI, vol. 12(4), pages 1-14, February.
    10. Liu, F. & Tait, S. & Schellart, A. & Mayfield, M. & Boxall, J., 2020. "Reducing carbon emissions by integrating urban water systems and renewable energy sources at a community scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    11. Mageswaran Rengasamy & Sivasankar Gangatharan & Rajvikram Madurai Elavarasan & Lucian Mihet-Popa, 2020. "The Motivation for Incorporation of Microgrid Technology in Rooftop Solar Photovoltaic Deployment to Enhance Energy Economics," Sustainability, MDPI, vol. 12(24), pages 1-27, December.
    12. Rasool M. Imran & Shaorong Wang, 2018. "Enhanced Two-Stage Hierarchical Control for a Dual Mode WECS-Based Microgrid," Energies, MDPI, vol. 11(5), pages 1-19, May.
    13. Yang, Xiaohui & Zhang, Zhonglian & Mei, Linghao & Wang, Xiaopeng & Deng, Yeheng & Wei, Shi & Liu, Xiaoping, 2023. "Optimal configuration of improved integrated energy system based on stepped carbon penalty response and improved power to gas," Energy, Elsevier, vol. 263(PD).
    14. Pinciroli, Luca & Baraldi, Piero & Compare, Michele & Zio, Enrico, 2023. "Optimal operation and maintenance of energy storage systems in grid-connected microgrids by deep reinforcement learning," Applied Energy, Elsevier, vol. 352(C).
    15. Toopshekan, Ashkan & Yousefi, Hossein & Astaraei, Fatemeh Razi, 2020. "Technical, economic, and performance analysis of a hybrid energy system using a novel dispatch strategy," Energy, Elsevier, vol. 213(C).
    16. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    17. Woo-Jung Kim & Yu-Seok Lee & Yeong-Han Chun & Hae-Seong Jeong, 2022. "Reserve-Constrained Unit Commitment Considering Adjustable-Speed Pumped-Storage Hydropower and Its Economic Effect in Korean Power System," Energies, MDPI, vol. 15(7), pages 1-23, March.
    18. Zhang, Xinshuo & Huang, Weibin & Chen, Shijun & Xie, Diya & Liu, Dexu & Ma, Guangwen, 2020. "Grid–source coordinated dispatching based on heterogeneous energy hybrid power generation," Energy, Elsevier, vol. 205(C).
    19. Gabriel Nasser Doyle de Doile & Paulo Rotella Junior & Luiz Célio Souza Rocha & Ivan Bolis & Karel Janda & Luiz Moreira Coelho Junior, 2021. "Hybrid Wind and Solar Photovoltaic Generation with Energy Storage Systems: A Systematic Literature Review and Contributions to Technical and Economic Regulations," Energies, MDPI, vol. 14(20), pages 1-22, October.
    20. Hoon Lee & Jin-Wook Kang & Bong-Yeon Choi & Kyung-Min Kang & Mi-Na Kim & Chang-Gyun An & Junsin Yi & Chung-Yuen Won, 2021. "Energy Management System of DC Microgrid in Grid-Connected and Stand-Alone Modes: Control, Operation and Experimental Validation," Energies, MDPI, vol. 14(3), pages 1-26, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4849-:d:610978. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.