IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i3p538-d484437.html
   My bibliography  Save this article

The Use of Capsuled Paraffin Wax in Low-Temperature Thermal Energy Storage Applications: An Experimental and Numerical Investigation

Author

Listed:
  • Agnieszka Ochman

    (Department of Thermodynamics and Renewable Energy Sources, Faculty of Mechanical and Power Engineering, Wrocław University of Science and Technology, 27 Wybrzeże Wyspiańskiego Street, 50-370 Wrocław, Poland)

  • Wei-Qin Chen

    (Department of Thermodynamics and Renewable Energy Sources, Faculty of Mechanical and Power Engineering, Wrocław University of Science and Technology, 27 Wybrzeże Wyspiańskiego Street, 50-370 Wrocław, Poland)

  • Przemysław Błasiak

    (Department of Thermodynamics and Renewable Energy Sources, Faculty of Mechanical and Power Engineering, Wrocław University of Science and Technology, 27 Wybrzeże Wyspiańskiego Street, 50-370 Wrocław, Poland)

  • Michał Pomorski

    (Department of Thermodynamics and Renewable Energy Sources, Faculty of Mechanical and Power Engineering, Wrocław University of Science and Technology, 27 Wybrzeże Wyspiańskiego Street, 50-370 Wrocław, Poland)

  • Sławomir Pietrowicz

    (Department of Thermodynamics and Renewable Energy Sources, Faculty of Mechanical and Power Engineering, Wrocław University of Science and Technology, 27 Wybrzeże Wyspiańskiego Street, 50-370 Wrocław, Poland)

Abstract

The article deals with the experimental and numerical thermal-flow behaviours of a low-temperature Phase Change Material (PCM) used in Thermal Energy Storage (TES) industrial applications. The investigated PCM is a composition that consists of a mixture of paraffin wax capsuled in a melamine-formaldehyde membrane and water, for which a phase change process occurs within the temperature range of 4 °C to 6 °C and the maximum heat storage capacity is equal to 72 kJ/kg. To test the TES capabilities of the PCM for operating conditions close to real ones, a series of experimental tests were performed on cylindrical modules with fixed heights of 250 mm and different outer diameters of 15, 22, and 28 mm, respectively. The module was tested in a specially designed wind tunnel where the Reynolds numbers of between 15,250 to 52,750 were achieved. In addition, a mathematical model of the analysed processes, based on the enthalpy porosity method, was proposed and validated. The temperature changes during the phase transitions that were obtained from the numerical analyses in comparison with the experimental results have not exceeded 20% of the relative error for the phase change region and no more than 10% for the rest. Additionally, the PCM was examined while using a Scanning Electron Microscope (SEM), which indicated no changes in the internal structure during phase transitions and a homogeneous structure, regardless of the tested temperature ranges.

Suggested Citation

  • Agnieszka Ochman & Wei-Qin Chen & Przemysław Błasiak & Michał Pomorski & Sławomir Pietrowicz, 2021. "The Use of Capsuled Paraffin Wax in Low-Temperature Thermal Energy Storage Applications: An Experimental and Numerical Investigation," Energies, MDPI, vol. 14(3), pages 1-27, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:538-:d:484437
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/3/538/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/3/538/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Juan Duan & Yongliang Xiong & Dan Yang, 2019. "On the Melting Process of the Phase Change Material in Horizontal Rectangular Enclosures," Energies, MDPI, vol. 12(16), pages 1-21, August.
    2. Zhang, P. & Xiao, X. & Ma, Z.W., 2016. "A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement," Applied Energy, Elsevier, vol. 165(C), pages 472-510.
    3. Verma, Prashant & Varun & Singal, S.K., 2008. "Review of mathematical modeling on latent heat thermal energy storage systems using phase-change material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(4), pages 999-1031, May.
    4. Juan Duan & Yongliang Xiong & Dan Yang, 2019. "Melting Behavior of Phase Change Material in Honeycomb Structures with Different Geometrical Cores," Energies, MDPI, vol. 12(15), pages 1-19, July.
    5. Du, Kun & Calautit, John & Wang, Zhonghua & Wu, Yupeng & Liu, Hao, 2018. "A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges," Applied Energy, Elsevier, vol. 220(C), pages 242-273.
    6. Amin, N.A.M. & Bruno, F. & Belusko, M., 2012. "Effectiveness–NTU correlation for low temperature PCM encapsulated in spheres," Applied Energy, Elsevier, vol. 93(C), pages 549-555.
    7. Kenisarin, Murat & Mahkamov, Khamid, 2007. "Solar energy storage using phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(9), pages 1913-1965, December.
    8. F. Javier Batlles & Bartosz Gil & Svetlana Ushak & Jacek Kasperski & Marcos Luján & Diana Maldonado & Magdalena Nemś & Artur Nemś & Antonio M. Puertas & Manuel S. Romero-Cano & Sabina Rosiek & Mario G, 2020. "Development and Results from Application of PCM-Based Storage Tanks in a Solar Thermal Comfort System of an Institutional Building—A Case Study," Energies, MDPI, vol. 13(15), pages 1-24, July.
    9. Regin, A. Felix & Solanki, S.C. & Saini, J.S., 2006. "Latent heat thermal energy storage using cylindrical capsule: Numerical and experimental investigations," Renewable Energy, Elsevier, vol. 31(13), pages 2025-2041.
    10. Anna Zastawna-Rumin & Tomasz Kisilewicz & Umberto Berardi, 2020. "Novel Simulation Algorithm for Modeling the Hysteresis of Phase Change Materials," Energies, MDPI, vol. 13(5), pages 1-15, March.
    11. Liu, Ming & Saman, Wasim & Bruno, Frank, 2012. "Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2118-2132.
    12. Domenico Mazzeo & Giuseppe Oliveti & Natale Arcuri, 2017. "A Method for Thermal Dimensioning and for Energy Behavior Evaluation of a Building Envelope PCM Layer by Using the Characteristic Days," Energies, MDPI, vol. 10(5), pages 1-19, May.
    13. Liu, Ming & Steven Tay, N.H. & Bell, Stuart & Belusko, Martin & Jacob, Rhys & Will, Geoffrey & Saman, Wasim & Bruno, Frank, 2016. "Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1411-1432.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shogo Tomita & Hasan Celik & Moghtada Mobedi, 2021. "Thermal Analysis of Solid/Liquid Phase Change in a Cavity with One Wall at Periodic Temperature," Energies, MDPI, vol. 14(18), pages 1-18, September.
    2. Łukasz Adrian & Szymon Szufa & Piotr Piersa & Filip Mikołajczyk, 2021. "Numerical Model of Heat Pipes as an Optimization Method of Heat Exchangers," Energies, MDPI, vol. 14(22), pages 1-38, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeinelabdein, Rami & Omer, Siddig & Gan, Guohui, 2018. "Critical review of latent heat storage systems for free cooling in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2843-2868.
    2. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    3. Costa, Sol Carolina & Kenisarin, Murat, 2022. "A review of metallic materials for latent heat thermal energy storage: Thermophysical properties, applications, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    4. Alizadeh, M. & Sadrameli, S.M., 2016. "Development of free cooling based ventilation technology for buildings: Thermal energy storage (TES) unit, performance enhancement techniques and design considerations – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 619-645.
    5. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Huang, Xiang & Alva, Guruprasad & Jia, Yuting & Fang, Guiyin, 2017. "Morphological characterization and applications of phase change materials in thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 128-145.
    7. Daniarta, Sindu & Nemś, Magdalena & Kolasiński, Piotr, 2023. "A review on thermal energy storage applicable for low- and medium-temperature organic Rankine cycle," Energy, Elsevier, vol. 278(PA).
    8. Jegadheeswaran, S. & Pohekar, S.D. & Kousksou, T., 2010. "Exergy based performance evaluation of latent heat thermal storage system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2580-2595, December.
    9. Elfeky, K.E. & Li, Xinyi & Ahmed, N. & Lu, Lin & Wang, Qiuwang, 2019. "Optimization of thermal performance in thermocline tank thermal energy storage system with the multilayered PCM(s) for CSP tower plants," Applied Energy, Elsevier, vol. 243(C), pages 175-190.
    10. Ge, Haoshan & Li, Haiyan & Mei, Shengfu & Liu, Jing, 2013. "Low melting point liquid metal as a new class of phase change material: An emerging frontier in energy area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 331-346.
    11. Kenisarin, Murat & Mahkamov, Khamid, 2016. "Passive thermal control in residential buildings using phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 371-398.
    12. Jegadheeswaran, S. & Pohekar, Sanjay D., 2009. "Performance enhancement in latent heat thermal storage system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2225-2244, December.
    13. Hobold, Gustavo M. & da Silva, Alexandre K., 2017. "Critical phenomena and their effect on thermal energy storage in supercritical fluids," Applied Energy, Elsevier, vol. 205(C), pages 1447-1458.
    14. Sharif, M.K. Anuar & Al-Abidi, A.A. & Mat, S. & Sopian, K. & Ruslan, M.H. & Sulaiman, M.Y. & Rosli, M.A.M., 2015. "Review of the application of phase change material for heating and domestic hot water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 557-568.
    15. Raud, Ralf & Cholette, Michael E. & Riahi, Soheila & Bruno, Frank & Saman, Wasim & Will, Geoffrey & Steinberg, Theodore A., 2017. "Design optimization method for tube and fin latent heat thermal energy storage systems," Energy, Elsevier, vol. 134(C), pages 585-594.
    16. Drissi, Sarra & Ling, Tung-Chai & Mo, Kim Hung & Eddhahak, Anissa, 2019. "A review of microencapsulated and composite phase change materials: Alteration of strength and thermal properties of cement-based materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 467-484.
    17. Randeep Singh & Sadegh Sadeghi & Bahman Shabani, 2018. "Thermal Conductivity Enhancement of Phase Change Materials for Low-Temperature Thermal Energy Storage Applications," Energies, MDPI, vol. 12(1), pages 1-20, December.
    18. Ahmed Hassan & Mohammad Shakeel Laghari & Yasir Rashid, 2016. "Micro-Encapsulated Phase Change Materials: A Review of Encapsulation, Safety and Thermal Characteristics," Sustainability, MDPI, vol. 8(10), pages 1-32, October.
    19. Li, Y.Q. & He, Y.L. & Song, H.J. & Xu, C. & Wang, W.W., 2013. "Numerical analysis and parameters optimization of shell-and-tube heat storage unit using three phase change materials," Renewable Energy, Elsevier, vol. 59(C), pages 92-99.
    20. Xu, Ben & Li, Peiwen & Chan, Cholik, 2015. "Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments," Applied Energy, Elsevier, vol. 160(C), pages 286-307.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:538-:d:484437. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.