IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i3p527-d483886.html
   My bibliography  Save this article

Melanopic Limits of Metamer Spectral Optimisation in Multi-Channel Smart Lighting Systems

Author

Listed:
  • Babak Zandi

    (Laboratory of Lighting Technology, Department of Electrical Engineering and Information Technology, Technical University of Darmstadt, D-64289 Darmstadt, Germany)

  • Adrian Eissfeldt

    (Laboratory of Lighting Technology, Department of Electrical Engineering and Information Technology, Technical University of Darmstadt, D-64289 Darmstadt, Germany)

  • Alexander Herzog

    (Laboratory of Lighting Technology, Department of Electrical Engineering and Information Technology, Technical University of Darmstadt, D-64289 Darmstadt, Germany)

  • Tran Quoc Khanh

    (Laboratory of Lighting Technology, Department of Electrical Engineering and Information Technology, Technical University of Darmstadt, D-64289 Darmstadt, Germany)

Abstract

Modern indoor lighting faces the challenge of finding an appropriate balance between energy consumption, legal requirements, visual performance, and the circadian effectiveness of a spectrum. Multi-channel LED luminaires have the option of keeping image-forming metrics steady while varying the melanopic radiance through metamer spectra for non-visual purposes. Here, we propose the theoretical concept of an automated smart lighting system that is designed to satisfy the user’s visual preference through neural networks while triggering the non-visual pathway via metamers. To quantify the melanopic limits of metamers at a steady chromaticity point, we have used 561 chromaticity coordinates along the Planckian locus (2700 K to 7443 K, ± Duv 0 to 0.048) as optimisation targets and generated the spectra by using a 6-channel, 8-channel, and 11-channel LED combination at three different luminance levels. We have found that in a best-case scenario, the melanopic radiance can be varied up to 65% while keeping the chromaticity coordinates constant ( Δ u ′ v ′ ≤ 7.05 × 10 − 5 ) by using metamer spectra. The highest melanopic metamer contrast can be reached near the Planckian locus between 3292 and 4717 K within a Duv range of −0.009 to 0.006. Additionally, we publish over 1.2 million optimised spectra generated by multichannel LED luminaires as an open-source dataset along with this work.

Suggested Citation

  • Babak Zandi & Adrian Eissfeldt & Alexander Herzog & Tran Quoc Khanh, 2021. "Melanopic Limits of Metamer Spectral Optimisation in Multi-Channel Smart Lighting Systems," Energies, MDPI, vol. 14(3), pages 1-16, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:527-:d:483886
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/3/527/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/3/527/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dennis M. Dacey & Hsi-Wen Liao & Beth B. Peterson & Farrel R. Robinson & Vivianne C. Smith & Joel Pokorny & King-Wai Yau & Paul D. Gamlin, 2005. "Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN," Nature, Nature, vol. 433(7027), pages 749-754, February.
    2. Michael Tri H. Do & Shin H. Kang & Tian Xue & Haining Zhong & Hsi-Wen Liao & Dwight E. Bergles & King-Wai Yau, 2009. "Photon capture and signalling by melanopsin retinal ganglion cells," Nature, Nature, vol. 457(7227), pages 281-287, January.
    3. Cui, Yunfei & Geng, Zhiqiang & Zhu, Qunxiong & Han, Yongming, 2017. "Review: Multi-objective optimization methods and application in energy saving," Energy, Elsevier, vol. 125(C), pages 681-704.
    4. Beccali, M. & Bonomolo, M. & Ciulla, G. & Lo Brano, V., 2018. "Assessment of indoor illuminance and study on best photosensors' position for design and commissioning of Daylight Linked Control systems. A new method based on artificial neural networks," Energy, Elsevier, vol. 154(C), pages 466-476.
    5. Atanu Sengupta & Sanjoy De, 2020. "Review of Literature," India Studies in Business and Economics, in: Assessing Performance of Banks in India Fifty Years After Nationalization, chapter 0, pages 15-30, Springer.
    6. Tara A. LeGates & Cara M. Altimus & Hui Wang & Hey-Kyoung Lee & Sunggu Yang & Haiqing Zhao & Alfredo Kirkwood & E. Todd Weber & Samer Hattar, 2012. "Aberrant light directly impairs mood and learning through melanopsin-expressing neurons," Nature, Nature, vol. 491(7425), pages 594-598, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cristina Blasi Casagran & Colleen Boland & Elena Sánchez-Montijano & Eva Vilà Sanchez, 2021. "The Role of Emerging Predictive IT Tools in Effective Migration Governance," Politics and Governance, Cogitatio Press, vol. 9(4), pages 133-145.
    2. You, Junyu & Ampomah, William & Sun, Qian, 2020. "Co-optimizing water-alternating-carbon dioxide injection projects using a machine learning assisted computational framework," Applied Energy, Elsevier, vol. 279(C).
    3. He Tingting, 2021. "Comparing Money and Time Donation: What Do Experiments Tell Us?," Marketing of Scientific and Research Organizations, Sciendo, vol. 41(3), pages 65-94, September.
    4. Alberto Cerezo-Narváez & Andrés Pastor-Fernández & Manuel Otero-Mateo & Pablo Ballesteros-Pérez, 2022. "The Influence of Knowledge on Managing Risk for the Success in Complex Construction Projects: The IPMA Approach," Sustainability, MDPI, vol. 14(15), pages 1-30, August.
    5. Changyu Zhou & Guohe Huang & Jiapei Chen, 2019. "A Type-2 Fuzzy Chance-Constrained Fractional Integrated Modeling Method for Energy System Management of Uncertainties and Risks," Energies, MDPI, vol. 12(13), pages 1-21, June.
    6. Rafidah Md Noor & Nadia Bella Gustiani Rasyidi & Tarak Nandy & Raenu Kolandaisamy, 2020. "Campus Shuttle Bus Route Optimization Using Machine Learning Predictive Analysis: A Case Study," Sustainability, MDPI, vol. 13(1), pages 1-24, December.
    7. Dominika Ehrenbergerová & Martin Hodula & Zuzana Gric, 2022. "Does capital-based regulation affect bank pricing policy?," Journal of Regulatory Economics, Springer, vol. 61(2), pages 135-167, April.
    8. Weiwei Cui & Biao Lu, 2020. "A Bi-Objective Approach to Minimize Makespan and Energy Consumption in Flow Shops with Peak Demand Constraint," Sustainability, MDPI, vol. 12(10), pages 1-22, May.
    9. Aris Tsangrassoulis & Lambros Doulos & Angelos Mylonas, 2021. "Simulating the Impact of Daytime Calibration in the Behavior of a Closed Loop Proportional Lighting Control System," Energies, MDPI, vol. 14(21), pages 1-22, October.
    10. Mohammed Khaled Al-Hanawi & Rubayyat Hashmi & Sarh Almubark & Ameerah M. N. Qattan & Mohammad Habibullah Pulok, 2020. "Socioeconomic Inequalities in Uptake of Breast Cancer Screening among Saudi Women: A Cross-Sectional Analysis of a National Survey," IJERPH, MDPI, vol. 17(6), pages 1-13, March.
    11. Ortega, José Luis, 2021. "How do media mention research papers? Structural analysis of blogs and news networks using citation coupling," Journal of Informetrics, Elsevier, vol. 15(3).
    12. Richard Grieveson & Michael Landesmann & Isilda Mara, 2021. "Potential Mobility from Africa, Middle East and EU Neighbouring Countries to Europe," wiiw Working Papers 199, The Vienna Institute for International Economic Studies, wiiw.
    13. Nour Eddine, A. & Chalet, D. & Faure, X. & Aixala, L. & Chessé, P., 2018. "Effect of engine exhaust gas pulsations on the performance of a thermoelectric generator for wasted heat recovery: An experimental and analytical investigation," Energy, Elsevier, vol. 162(C), pages 715-727.
    14. Pham, Hanh Song Thi & Petersen, Bent, 2021. "The bargaining power, value capture, and export performance of Vietnamese manufacturers in global value chains," International Business Review, Elsevier, vol. 30(6).
    15. Wafa Alwakid & Sebastian Aparicio & David Urbano, 2021. "The Influence of Green Entrepreneurship on Sustainable Development in Saudi Arabia: The Role of Formal Institutions," IJERPH, MDPI, vol. 18(10), pages 1-23, May.
    16. Gary Gereffi, 2020. "What does the COVID-19 pandemic teach us about global value chains? The case of medical supplies," Journal of International Business Policy, Palgrave Macmillan, vol. 3(3), pages 287-301, September.
    17. E. Denny, 2022. "Long-term Energy Cost Labelling for Appliances: Evidence from a Randomised Controlled Trial in Ireland," Journal of Consumer Policy, Springer, vol. 45(3), pages 369-409, September.
    18. Nizami, M.S.H. & Hossain, M.J. & Amin, B.M. Ruhul & Fernandez, Edstan, 2020. "A residential energy management system with bi-level optimization-based bidding strategy for day-ahead bi-directional electricity trading," Applied Energy, Elsevier, vol. 261(C).
    19. Kentaka Aruga & Md. Monirul Islam & Yoshihiro Zenno & Arifa Jannat, 2022. "Developing Novel Technique for Investigating Guidelines and Frameworks: A Text Mining Comparison between International and Japanese Green Bonds," JRFM, MDPI, vol. 15(9), pages 1-17, August.
    20. Lenka Mynaříková & Lukáš Novotný, 2020. "Knowledge Society Failure? Barriers in the Use of ICTs and Further Teacher Education in the Czech Republic," Sustainability, MDPI, vol. 12(17), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:527-:d:483886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.