IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i24p8358-d700263.html
   My bibliography  Save this article

The Condition of Photovoltaic Modules under Random Operation Parameters

Author

Listed:
  • Grzegorz Trzmiel

    (Faculty of Electrical Engineering, Poznan University of Technology, 60-965 Poznan, Poland)

  • Jaroslaw Jajczyk

    (Faculty of Electrical Engineering, Poznan University of Technology, 60-965 Poznan, Poland)

  • Ewa Kardas-Cinal

    (Faculty of Transport, Warsaw University of Technology, 00-662 Warsaw, Poland)

  • Norbert Chamier-Gliszczynski

    (Faculty of Mechanical Engineering, Koszalin University of Technology, 75-453 Koszalin, Poland)

  • Waldemar Wozniak

    (Faculty of Mechanical Engineering, University of Zielona Gora, 65-001 Zielona Gora, Poland)

  • Konrad Lewczuk

    (Faculty of Transport, Warsaw University of Technology, 00-662 Warsaw, Poland)

Abstract

The paper presents an original method underlying an efficient tool for assessing the condition of photovoltaic (PV) modules, in particular, those made of amorphous cells. Significantly random changes in operational parameters characterize amorphous cell operation and cause them to be challenging to test, especially in working conditions. To develop the method, the authors modified the residual method with incorporated histograms. The proposed method has been verified through experiments that show the usefulness of the proposed approach. It significantly minimizes the risk of false diagnostic information in assessing the condition of photovoltaic modules. Based on the proposed methods, the inference results confirm the effectiveness of the concept for evaluating the degree of failure of the photovoltaic module described in the paper.

Suggested Citation

  • Grzegorz Trzmiel & Jaroslaw Jajczyk & Ewa Kardas-Cinal & Norbert Chamier-Gliszczynski & Waldemar Wozniak & Konrad Lewczuk, 2021. "The Condition of Photovoltaic Modules under Random Operation Parameters," Energies, MDPI, vol. 14(24), pages 1-18, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8358-:d:700263
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/24/8358/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/24/8358/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muhannad Alshareef & Zhengyu Lin & Mingyao Ma & Wenping Cao, 2019. "Accelerated Particle Swarm Optimization for Photovoltaic Maximum Power Point Tracking under Partial Shading Conditions," Energies, MDPI, vol. 12(4), pages 1-18, February.
    2. Waldemar Kuczynski & Kazimierz Kaminski & Pawel Znaczko & Norbert Chamier-Gliszczynski & Piotr Piatkowski, 2021. "On the Correlation between the Geometrical Features and Thermal Efficiency of Flat-Plate Solar Collectors," Energies, MDPI, vol. 14(2), pages 1-15, January.
    3. Omer A. Alawi & Haslinda Mohamed Kamar & Abdul Rahman Mallah & Hussein A. Mohammed & Mohd Aizad Sazrul Sabrudin & Kazi Md. Salim Newaz & Gholamhassan Najafi & Zaher Mundher Yaseen, 2021. "Experimental and Theoretical Analysis of Energy Efficiency in a Flat Plate Solar Collector Using Monolayer Graphene Nanofluids," Sustainability, MDPI, vol. 13(10), pages 1-22, May.
    4. Bugała, A. & Zaborowicz, M. & Boniecki, P. & Janczak, D. & Koszela, K. & Czekała, W. & Lewicki, A., 2018. "Short-term forecast of generation of electric energy in photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 306-312.
    5. John Haslett & Kevin Hayes, 1998. "Residuals for the linear model with general covariance structure," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(1), pages 201-215.
    6. Zhang, Chunxiao & Shen, Chao & Yang, Qianru & Wei, Shen & Lv, Guoquan & Sun, Cheng, 2020. "An investigation on the attenuation effect of air pollution on regional solar radiation," Renewable Energy, Elsevier, vol. 161(C), pages 570-578.
    7. Trzmiel, G. & Głuchy, D. & Kurz, D., 2020. "The impact of shading on the exploitation of photovoltaic installations," Renewable Energy, Elsevier, vol. 153(C), pages 480-498.
    8. Ehab Mohamed Ali & Ahmed K. Abdelsalam & Karim H. Youssef & Ahmed A. Hossam-Eldin, 2021. "An Enhanced Cuckoo Search Algorithm Fitting for Photovoltaic Systems’ Global Maximum Power Point Tracking under Partial Shading Conditions," Energies, MDPI, vol. 14(21), pages 1-21, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wiktor Olchowik & Marcin Bednarek & Tadeusz Dąbrowski & Adam Rosiński, 2023. "Application of the Energy Efficiency Mathematical Model to Diagnose Photovoltaic Micro-Systems," Energies, MDPI, vol. 16(18), pages 1-24, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pawel Znaczko & Kazimierz Kaminski & Norbert Chamier-Gliszczynski & Emilian Szczepanski & Paweł Gołda, 2021. "Experimental Analysis of Control Methods in Solar Water Heating Systems," Energies, MDPI, vol. 14(24), pages 1-16, December.
    2. Lu, Yunbo & Wang, Lunche & Zhu, Canming & Zou, Ling & Zhang, Ming & Feng, Lan & Cao, Qian, 2023. "Predicting surface solar radiation using a hybrid radiative Transfer–Machine learning model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    3. Shi, Lei & Chen, Gemai, 2012. "Deletion, replacement and mean-shift for diagnostics in linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 202-208, January.
    4. J. Haslett & M. Whiley & S. Bhattacharya & M. Salter‐Townshend & Simon P. Wilson & J. R. M. Allen & B. Huntley & F. J. G. Mitchell, 2006. "Bayesian palaeoclimate reconstruction," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(3), pages 395-438, July.
    5. Qiong Wu & Xiaofeng Zhang & Qi Wang, 2024. "Integrating Renewable Energy in Transportation: Challenges, Solutions, and Future Prospects on Photovoltaic Noise Barriers," Sustainability, MDPI, vol. 16(6), pages 1-19, March.
    6. Mariam A. Sameh & Mostafa I. Marei & M. A. Badr & Mahmoud A. Attia, 2021. "An Optimized PV Control System Based on the Emperor Penguin Optimizer," Energies, MDPI, vol. 14(3), pages 1-16, February.
    7. Saud Alotaibi & Ahmed Darwish, 2021. "Modular Multilevel Converters for Large-Scale Grid-Connected Photovoltaic Systems: A Review," Energies, MDPI, vol. 14(19), pages 1-30, September.
    8. Ghoname Abdullah & Hidekazu Nishimura & Toshio Fujita, 2021. "An Experimental Investigation on Photovoltaic Array Power Output Affected by the Different Partial Shading Conditions," Energies, MDPI, vol. 14(9), pages 1-14, April.
    9. Omer A. Alawi & Haslinda Mohamed Kamar & Abdul Rahman Mallah & Hussein A. Mohammed & Mohd Aizad Sazrul Sabrudin & Kazi Md. Salim Newaz & Gholamhassan Najafi & Zaher Mundher Yaseen, 2021. "Experimental and Theoretical Analysis of Energy Efficiency in a Flat Plate Solar Collector Using Monolayer Graphene Nanofluids," Sustainability, MDPI, vol. 13(10), pages 1-22, May.
    10. Martina Radicioni & Valentina Lucaferri & Francesco De Lia & Antonino Laudani & Roberto Lo Presti & Gabriele Maria Lozito & Francesco Riganti Fulginei & Riccardo Schioppo & Mario Tucci, 2021. "Power Forecasting of a Photovoltaic Plant Located in ENEA Casaccia Research Center," Energies, MDPI, vol. 14(3), pages 1-22, January.
    11. Dávid Matusz-Kalász & István Bodnár, 2021. "Operation Problems of Solar Panel Caused by the Surface Contamination," Energies, MDPI, vol. 14(17), pages 1-13, September.
    12. Arkadiusz Dobrzycki & Dariusz Kurz & Stanisław Mikulski & Grzegorz Wodnicki, 2020. "Analysis of the Impact of Building Integrated Photovoltaics (BIPV) on Reducing the Demand for Electricity and Heat in Buildings Located in Poland," Energies, MDPI, vol. 13(10), pages 1-19, May.
    13. Herez, Amal & El Hage, Hicham & Lemenand, Thierry & Ramadan, Mohamad & Khaled, Mahmoud, 2021. "Parabolic trough photovoltaic/thermal hybrid system: Thermal modeling and parametric analysis," Renewable Energy, Elsevier, vol. 165(P1), pages 224-236.
    14. Cheng, Xinghong & Ye, Dong & Shen, Yanbo & Li, Deping & Feng, Jinming, 2022. "Studies on the improvement of modelled solar radiation and the attenuation effect of aerosol using the WRF-Solar model with satellite-based AOD data over north China," Renewable Energy, Elsevier, vol. 196(C), pages 358-365.
    15. Andrea Cerioli & Marco Riani, 2002. "Robust methods for the analysis of spatially autocorrelated data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 11(3), pages 335-358, October.
    16. Dilip Kumar & Yogesh Kumar Chauhan & Ajay Shekhar Pandey & Ankit Kumar Srivastava & Varun Kumar & Faisal Alsaif & Rajvikram Madurai Elavarasan & Md Rabiul Islam & Raju Kannadasan & Mohammed H. Alshari, 2023. "A Novel Hybrid MPPT Approach for Solar PV Systems Using Particle-Swarm-Optimization-Trained Machine Learning and Flying Squirrel Search Optimization," Sustainability, MDPI, vol. 15(6), pages 1-29, March.
    17. Imran Pervez & Charalampos Antoniadis & Yehia Massoud, 2022. "Advanced Limited Search Strategy for Enhancing the Performance of MPPT Algorithms," Energies, MDPI, vol. 15(15), pages 1-19, August.
    18. Ehab Mohamed Ali & Ahmed K. Abdelsalam & Karim H. Youssef & Ahmed A. Hossam-Eldin, 2021. "An Enhanced Cuckoo Search Algorithm Fitting for Photovoltaic Systems’ Global Maximum Power Point Tracking under Partial Shading Conditions," Energies, MDPI, vol. 14(21), pages 1-21, November.
    19. Vytautas Bocullo & Linas Martišauskas & Ramūnas Gatautis & Otilija Vonžudaitė & Rimantas Bakas & Darius Milčius & Rytis Venčaitis & Darius Pupeikis, 2023. "A Digital Twin Approach to City Block Renovation Using RES Technologies," Sustainability, MDPI, vol. 15(12), pages 1-26, June.
    20. Dariusz Kurz & Agata Nowak, 2023. "Analysis of the Impact of the Level of Self-Consumption of Electricity from a Prosumer Photovoltaic Installation on Its Profitability under Different Energy Billing Scenarios in Poland," Energies, MDPI, vol. 16(2), pages 1-40, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8358-:d:700263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.