IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i23p8192-d696369.html
   My bibliography  Save this article

Performance Assessment of Using Thermoelectric Generators for Waste Heat Recovery from Vapor Compression Refrigeration Systems

Author

Listed:
  • Alaa Attar

    (Mechanical Engineering Department, Faculty of Engineering at Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Mohamed Rady

    (Mechanical Engineering Department, Faculty of Engineering at Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Abdullah Abuhabaya

    (Mechanical Engineering Department, Faculty of Engineering at Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Faisal Albatati

    (Mechanical Engineering Department, Faculty of Engineering at Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Abdelkarim Hegab

    (Mechanical Engineering Department, Faculty of Engineering at Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Eydhah Almatrafi

    (Mechanical Engineering Department, Faculty of Engineering at Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

Abstract

This article reports on an experimental analysis and performance assessment of using thermoelectric generators (TEGs) for waste heat recovery from residential vapor compression refrigeration systems. The analysis shows that there is a good opportunity for waste heat recovery using TEGs by de-superheating refrigerant after the compressor. Design and manufacturing of a de-superheater unit consisting of a tube and plate heat exchanger and thermoelectric generator modules (HE-TEGs) have been performed and integrated in an experimental test rig of R134a refrigeration cycle. Experimental assessment of the performance parameters, as compared to the basic refrigeration system, reveals that the overall coefficient of performance (COP) using HE-TEGs desuperheater unit increases by values ranging from 17% to 32% depending on the condenser and evaporator loads. Exergy analysis shows that the enhancement is attributed to reduction in the exergy destruction in the condenser and compressor due to lower values of condenser pressure and pressure ratio of the compressor. The output power of the HE-TEGs unit is found to be sufficient for driving the TEGs heat sinks air cooling fan, thus providing a passive de-superheating system without an additional external source of electricity. Further enhancement of the refrigeration cycle performance can be achieved by installation of additional HE-TEGs units.

Suggested Citation

  • Alaa Attar & Mohamed Rady & Abdullah Abuhabaya & Faisal Albatati & Abdelkarim Hegab & Eydhah Almatrafi, 2021. "Performance Assessment of Using Thermoelectric Generators for Waste Heat Recovery from Vapor Compression Refrigeration Systems," Energies, MDPI, vol. 14(23), pages 1-17, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8192-:d:696369
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/23/8192/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/23/8192/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xia, Mingzhu & Yuan, Yanping & Zhao, Xudong & Cao, Xiaoling & Tang, Zhonghua, 2016. "Cold storage condensation heat recovery system with a novel composite phase change material," Applied Energy, Elsevier, vol. 175(C), pages 259-268.
    2. Pourkiaei, Seyed Mohsen & Ahmadi, Mohammad Hossein & Sadeghzadeh, Milad & Moosavi, Soroush & Pourfayaz, Fathollah & Chen, Lingen & Pour Yazdi, Mohammad Arab & Kumar, Ravinder, 2019. "Thermoelectric cooler and thermoelectric generator devices: A review of present and potential applications, modeling and materials," Energy, Elsevier, vol. 186(C).
    3. Mohamed Rady & Faisal Albatati & Abdelkarim Hegab & Abdullah Abuhabaya & Alaa Attar, 2021. "Design and analysis of waste heat recovery from residential air conditioning units for cooling and pure water production," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 16(3), pages 1018-1032.
    4. Byrne, Paul & Fournaison, Laurence & Delahaye, Anthony & Ait Oumeziane, Yacine & Serres, Laurent & Loulergue, Patrick & Szymczyk, Anthony & Mugnier, Daniel & Malaval, Jean-Luc & Bourdais, Romain & Gue, 2015. "A review on the coupling of cooling, desalination and solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 703-717.
    5. She, Xiaohui & Cong, Lin & Nie, Binjian & Leng, Guanghui & Peng, Hao & Chen, Yi & Zhang, Xiaosong & Wen, Tao & Yang, Hongxing & Luo, Yimo, 2018. "Energy-efficient and -economic technologies for air conditioning with vapor compression refrigeration: A comprehensive review," Applied Energy, Elsevier, vol. 232(C), pages 157-186.
    6. Hughes, Ben Richard & Chaudhry, Hassam Nasarullah & Ghani, Saud Abdul, 2011. "A review of sustainable cooling technologies in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3112-3120, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali Alahmer & Rania M. Ghoniem, 2023. "Improving Automotive Air Conditioning System Performance Using Composite Nano-Lubricants and Fuzzy Modeling Optimization," Sustainability, MDPI, vol. 15(12), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed S. Alsaman & Ahmed A. Hassan & Ehab S. Ali & Ramy H. Mohammed & Alaa E. Zohir & Ayman M. Farid & Ayman M. Zakaria Eraqi & Hamdy H. El-Ghetany & Ahmed A. Askalany, 2022. "Hybrid Solar-Driven Desalination/Cooling Systems: Current Situation and Future Trend," Energies, MDPI, vol. 15(21), pages 1-25, October.
    2. Deng, S. & Wang, R.Z. & Dai, Y.J., 2014. "How to evaluate performance of net zero energy building – A literature research," Energy, Elsevier, vol. 71(C), pages 1-16.
    3. Fatih Selimefendigil & Hakan F. Oztop & Mikhail A. Sheremet, 2021. "Thermoelectric Generation with Impinging Nano-Jets," Energies, MDPI, vol. 14(2), pages 1-24, January.
    4. Duan, Mengfan & Sun, Hongli & Lin, Borong & Wu, Yifan, 2021. "Evaluation on the applicability of thermoelectric air cooling systems for buildings with thermoelectric material optimization," Energy, Elsevier, vol. 221(C).
    5. Ciro Aprea & Laura Canale & Marco Dell’Isola & Giorgio Ficco & Andrea Frattolillo & Angelo Maiorino & Fabio Petruzziello, 2023. "On the Use of Ultrasonic Flowmeters for Cooling Energy Metering and Sub-Metering in Direct Expansion Systems," Energies, MDPI, vol. 16(12), pages 1-16, June.
    6. Hughes, Ben Richard & Chaudhry, Hassam Nasarullah & Calautit, John Kaiser, 2014. "Passive energy recovery from natural ventilation air streams," Applied Energy, Elsevier, vol. 113(C), pages 127-140.
    7. Maleki, Yaser & Pourfayaz, Fathollah & Mehrpooya, Mehdi, 2022. "Experimental study of a novel hybrid photovoltaic/thermal and thermoelectric generators system with dual phase change materials," Renewable Energy, Elsevier, vol. 201(P2), pages 202-215.
    8. Ahmed, Hossam A. & Megahed, Tamer F. & Mori, Shinsuke & Nada, Sameh & Hassan, Hamdy, 2023. "Novel design of thermo-electric air conditioning system integrated with PV panel for electric vehicles: Performance evaluation," Applied Energy, Elsevier, vol. 349(C).
    9. Liu, Haowen & Li, Guiqiang & Zhao, Xudong & Ma, Xiaoli & Shen, Chao, 2023. "Investigation of the impact of the thermoelectric geometry on the cooling performance and thermal—mechanic characteristics in a thermoelectric cooler," Energy, Elsevier, vol. 267(C).
    10. Beltrán-Pitarch, Braulio & Maassen, Jesse & García-Cañadas, Jorge, 2021. "Comprehensive impedance spectroscopy equivalent circuit of a thermoelectric device which includes the internal thermal contact resistances," Applied Energy, Elsevier, vol. 299(C).
    11. Payam Nejat & Fatemeh Jomehzadeh & Hasanen Mohammed Hussen & John Kaiser Calautit & Muhd Zaimi Abd Majid, 2018. "Application of Wind as a Renewable Energy Source for Passive Cooling through Windcatchers Integrated with Wing Walls," Energies, MDPI, vol. 11(10), pages 1-23, September.
    12. Zhaochun Shi & Guohua Wang & Chunli Liu & Qiang Lv & Baoli Gong & Yingchao Zhang & Yuying Yan, 2023. "Optimizing the Transient Performance of Thermoelectric Generator with PCM by Taguchi Method," Energies, MDPI, vol. 16(2), pages 1-16, January.
    13. Haitao Wang & Jianfeng Zhai, 2023. "Simulation Analysis of High Radiant Heat Plant Cooling and Endothermic Screen Waste Heat Recovery Performance Based on FLUENT," Energies, MDPI, vol. 16(10), pages 1-16, May.
    14. Wen, Tao & Lu, Lin, 2019. "A review of correlations and enhancement approaches for heat and mass transfer in liquid desiccant dehumidification system," Applied Energy, Elsevier, vol. 239(C), pages 757-784.
    15. Weng, Zebin & Liu, Furong & Zhu, Wenchao & Li, Yang & Xie, Changjun & Deng, Jian & Huang, Liang, 2022. "Performance improvement of variable-angle annular thermoelectric generators considering different boundary conditions," Applied Energy, Elsevier, vol. 306(PA).
    16. Mohan, Gowtham & Kumar, Uday & Pokhrel, Manoj Kumar & Martin, Andrew, 2016. "A novel solar thermal polygeneration system for sustainable production of cooling, clean water and domestic hot water in United Arab Emirates: Dynamic simulation and economic evaluation," Applied Energy, Elsevier, vol. 167(C), pages 173-188.
    17. Wei, Lien Chin & Malen, Jonathan A., 2016. "Amplified charge and discharge rates in phase change materials for energy storage using spatially-enhanced thermal conductivity," Applied Energy, Elsevier, vol. 181(C), pages 224-231.
    18. Wen, Tao & Lu, Lin & He, Weifeng & Min, Yunran, 2020. "Fundamentals and applications of CFD technology on analyzing falling film heat and mass exchangers: A comprehensive review," Applied Energy, Elsevier, vol. 261(C).
    19. Stevanović, Sanja, 2013. "Optimization of passive solar design strategies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 177-196.
    20. Lin Chen & Yizhi Zhang & Karim Ragui & Chaofeng Hou & Jinguang Zang & Yanping Huang, 2023. "Molecular Dynamics Method for Supercritical CO 2 Heat Transfer: A Review," Energies, MDPI, vol. 16(6), pages 1-28, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8192-:d:696369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.