IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i23p8112-d694559.html
   My bibliography  Save this article

Microalgal Systems for Wastewater Treatment: Technological Trends and Challenges towards Waste Recovery

Author

Listed:
  • Etiele G. Morais

    (CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal)

  • Nathana L. Cristofoli

    (CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
    MED—Mediterranean Institute for Agriculture, Environment and Development, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal)

  • Inês B. Maia

    (CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal)

  • Tânia Magina

    (Necton Companhia Portuguesa de Culturas Marinhas, S.A. Belamandil, 8700-152 Olhão, Portugal)

  • Paulo R. Cerqueira

    (CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal)

  • Margarida Ribau Teixeira

    (CENSE—Centre for Research on the Environment and Sustainability, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal)

  • João Varela

    (CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
    GreenCoLab—Green Ocean Technologies and Products Collaborative Laboratory, CCMAR, Algarve University, 8005-139 Faro, Portugal)

  • Luísa Barreira

    (CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal)

  • Luísa Gouveia

    (GreenCoLab—Green Ocean Technologies and Products Collaborative Laboratory, CCMAR, Algarve University, 8005-139 Faro, Portugal
    LNEG-UBB—National Laboratory of Energy and Geology I.P., Bioenergy and Biorefineries Unit, Estrada do Paço do Lumiar 22, 1649-038 Lisbon, Portugal)

Abstract

Wastewater (WW) treatment using microalgae has become a growing trend due the economic and environmental benefits of the process. As microalgae need CO 2 , nitrogen, and phosphorus to grow, they remove these potential pollutants from wastewaters, making them able to replace energetically expensive treatment steps in conventional WW treatment. Unlike traditional sludge, biomass can be used to produce biofuels, biofertilizers, high value chemicals, and even next-generation growth media for “organically” grown microalgal biomass targeting zero-waste policies and contributing to a more sustainable circular bioeconomy. The main challenge in this technology is the techno-economic feasibility of the system. Alternatives such as the isolation of novel strains, the use of native consortia, and the design of new bioreactors have been studied to overcome this and aid the scale-up of microalgal systems. This review focuses on the treatment of urban, industrial, and agricultural wastewaters by microalgae and their ability to not only remove, but also promote the reuse, of those pollutants. Opportunities and future prospects are discussed, including the upgrading of the produced biomass into valuable compounds, mainly biofuels.

Suggested Citation

  • Etiele G. Morais & Nathana L. Cristofoli & Inês B. Maia & Tânia Magina & Paulo R. Cerqueira & Margarida Ribau Teixeira & João Varela & Luísa Barreira & Luísa Gouveia, 2021. "Microalgal Systems for Wastewater Treatment: Technological Trends and Challenges towards Waste Recovery," Energies, MDPI, vol. 14(23), pages 1-26, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8112-:d:694559
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/23/8112/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/23/8112/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Molinuevo-Salces, Beatriz & Mahdy, Ahmed & Ballesteros, Mercedes & González-Fernández, Cristina, 2016. "From piggery wastewater nutrients to biogas: Microalgae biomass revalorization through anaerobic digestion," Renewable Energy, Elsevier, vol. 96(PB), pages 1103-1110.
    2. Cai, Ting & Park, Stephen Y. & Li, Yebo, 2013. "Nutrient recovery from wastewater streams by microalgae: Status and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 360-369.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raúl Barros & Sara Raposo & Etiele G. Morais & Brígida Rodrigues & Valdemira Afonso & Pedro Gonçalves & José Marques & Paulo Ricardo Cerqueira & João Varela & Margarida Ribau Teixeira & Luísa Barreira, 2022. "Biogas Production from Microalgal Biomass Produced in the Tertiary Treatment of Urban Wastewater: Assessment of Seasonal Variations," Energies, MDPI, vol. 15(15), pages 1-10, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pires, José C.M., 2017. "COP21: The algae opportunity?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 867-877.
    2. Vieira de Mendonça, Henrique & Assemany, Paula & Abreu, Mariana & Couto, Eduardo & Maciel, Alyne Martins & Duarte, Renata Lopes & Barbosa dos Santos, Marcela Granato & Reis, Alberto, 2021. "Microalgae in a global world: New solutions for old problems?," Renewable Energy, Elsevier, vol. 165(P1), pages 842-862.
    3. Hussain, Fida & Shah, Syed Z. & Ahmad, Habib & Abubshait, Samar A. & Abubshait, Haya A. & Laref, A. & Manikandan, A. & Kusuma, Heri S. & Iqbal, Munawar, 2021. "Microalgae an ecofriendly and sustainable wastewater treatment option: Biomass application in biofuel and bio-fertilizer production. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    4. Thi Dong Phuong Nguyen & Duc Huy Nguyen & Jun Wei Lim & Chih-Kai Chang & Hui Yi Leong & Thi Ngoc Thu Tran & Thi Bich Hau Vu & Thi Trung Chinh Nguyen & Pau Loke Show, 2019. "Investigation of the Relationship between Bacteria Growth and Lipid Production Cultivating of Microalgae Chlorella Vulgaris in Seafood Wastewater," Energies, MDPI, vol. 12(12), pages 1-12, June.
    5. Andrade, L.A. & Batista, F.R.X. & Lira, T.S. & Barrozo, M.A.S. & Vieira, L.G.M., 2018. "Characterization and product formation during the catalytic and non-catalytic pyrolysis of the green microalgae Chlamydomonas reinhardtii," Renewable Energy, Elsevier, vol. 119(C), pages 731-740.
    6. Giovanna Salbitani & Simona Carfagna, 2021. "Ammonium Utilization in Microalgae: A Sustainable Method for Wastewater Treatment," Sustainability, MDPI, vol. 13(2), pages 1-17, January.
    7. Aragón-Briceño, C.I. & Pozarlik, A.K. & Bramer, E.A. & Niedzwiecki, Lukasz & Pawlak-Kruczek, H. & Brem, G., 2021. "Hydrothermal carbonization of wet biomass from nitrogen and phosphorus approach: A review," Renewable Energy, Elsevier, vol. 171(C), pages 401-415.
    8. Hong-Duck Ryu & Do Young Lim & Sun-Jung Kim & Un-Il Baek & Eu Gene Chung & Kyunghyun Kim & Jae Kwan Lee, 2020. "Struvite Precipitation for Sustainable Recovery of Nitrogen and Phosphorus from Anaerobic Digestion Effluents of Swine Manure," Sustainability, MDPI, vol. 12(20), pages 1-15, October.
    9. SundarRajan, PanneerSelvam & Gopinath, Kannappan Panchamoorthy & Arun, Jayaseelan & GracePavithra, Kirubanandam & Pavendan, Kumar & AdithyaJoseph, Antonysamy, 2020. "An insight into carbon balance of product streams from hydrothermal liquefaction of Scenedesmus abundans biomass," Renewable Energy, Elsevier, vol. 151(C), pages 79-87.
    10. Alcinda P. Lopes & Francisca M. Santos & Tânia F. C. V. Silva & Vítor J. P. Vilar & José C. M. Pires, 2020. "Outdoor Cultivation of the Microalga Chlorella vulgaris in a New Photobioreactor Configuration: The Effect of Ultraviolet and Visible Radiation," Energies, MDPI, vol. 13(8), pages 1-18, April.
    11. Kligerman, Debora Cynamon & Bouwer, Edward J., 2015. "Prospects for biodiesel production from algae-based wastewater treatment in Brazil: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1834-1846.
    12. Zhu, L.-D. & Hiltunen, E., 2016. "Application of livestock waste compost to cultivate microalgae for bioproducts production: A feasible framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1285-1290.
    13. Tasić, Marija B. & Pinto, Luisa Fernanda Rios & Klein, Bruno Colling & Veljković, Vlada B. & Filho, Rubens Maciel, 2016. "Botryococcus braunii for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 260-270.
    14. Dhani S. Wibawa & Muhammad A. Nasution & Ryozo Noguchi & Tofael Ahamed & Mikihide Demura & Makoto M. Watanabe, 2018. "Microalgae Oil Production: A Downstream Approach to Energy Requirements for the Minamisoma Pilot Plant," Energies, MDPI, vol. 11(3), pages 1-16, February.
    15. Rahul Prasad Singh & Priya Yadav & Indrajeet Kumar & Manoj Kumar Solanki & Rajib Roychowdhury & Ajay Kumar & Rajan Kumar Gupta, 2023. "Advancement of Abiotic Stresses for Microalgal Lipid Production and Its Bioprospecting into Sustainable Biofuels," Sustainability, MDPI, vol. 15(18), pages 1-36, September.
    16. Meneses-Quelal Orlando & Velázquez-Martí Borja, 2020. "Pretreatment of Animal Manure Biomass to Improve Biogas Production: A Review," Energies, MDPI, vol. 13(14), pages 1-28, July.
    17. Selvaratnam, T. & Henkanatte-Gedera, S.M. & Muppaneni, T. & Nirmalakhandan, N. & Deng, S. & Lammers, P.J., 2016. "Maximizing recovery of energy and nutrients from urban wastewaters," Energy, Elsevier, vol. 104(C), pages 16-23.
    18. Oliveira, Verónica & Kirkelund, Gunvor M. & Horta, Carmo & Labrincha, João & Dias-Ferreira, Celia, 2019. "Improving the energy efficiency of an electrodialytic process to extract phosphorus from municipal solid waste digestate through different strategies," Applied Energy, Elsevier, vol. 247(C), pages 182-189.
    19. Ana L. Gonçalves & Maria C. M. Alvim-Ferraz & Fernando G. Martins & Manuel Simões & José C. M. Pires, 2016. "Integration of Microalgae-Based Bioenergy Production into a Petrochemical Complex: Techno-Economic Assessment," Energies, MDPI, vol. 9(4), pages 1-17, March.
    20. Siqueira, J.C. & Braga, M.Q. & Ázara, M.S. & Garcia, K.J. & Alencar, S.N.M. & Ramos, T.S. & Siniscalchi, L.A.B. & Assemany, P.P. & Ensinas, A.V., 2022. "Recovery of vinasse with combined microalgae cultivation in a conceptual energy-efficient industrial plant: Analysis of related process considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8112-:d:694559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.