IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i23p7904-d687542.html
   My bibliography  Save this article

Behavioral Modeling Paradigm for DC Nanogrid Based Distributed Energy Systems

Author

Listed:
  • Muhammad Saad

    (Department of Automation, School of Electronic and Control Engineering, Chang’an University, Xi’an 710072, China)

  • Yongfeng Ju

    (Department of Automation, School of Electronic and Control Engineering, Chang’an University, Xi’an 710072, China)

  • Husan Ali

    (Department of Electrical Engineering, Air University, Aerospace & Aviation Campus, Kamra 43570, Pakistan)

  • Sami Ullah Jan

    (Department of Electrical Engineering, University of Engineering & Technology, Peshawar 25120, Pakistan)

  • Dawar Awan

    (Department of Electrical Technology, University of Technology, Nowshera 24100, Pakistan)

  • Shahbaz Khan

    (Department of Electrical Engineering, Air University, Aerospace & Aviation Campus, Kamra 43570, Pakistan)

  • Abdul Wadood

    (Department of Electrical Engineering, Air University, Aerospace & Aviation Campus, Kamra 43570, Pakistan)

  • Bakht Muhammad Khan

    (Department of Electrical Engineering, Air University, Aerospace & Aviation Campus, Kamra 43570, Pakistan)

  • Akhtar Ali

    (Department of Electrical Engineering, University of Engineering & Technology, Peshawar 25120, Pakistan)

  • Tahir Khurshaid

    (Department of Electrical Engineering, Yeungnam University, 280, Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Korea)

Abstract

The remarkable progress of power electronic converters (PEC) technology has led to their increased penetration in distributed energy systems (DES). Particularly, the direct current (dc) nanogrid-based DES embody a variety of sources and loads, connected through a central dc bus. Therefore, PECs are required to be employed as an interface. It would facilitate incorporation of the renewable energy sources and battery storage system into dc nanogrids. However, it is more challenging as the integration of multiple modules may cause instabilities in the overall system dynamics. Future dc nanogrids are envisioned to deploy ready-to-use commercial PEC, for which designers have no insight into their dynamic behavior. Furthermore, the high variability of the operating conditions constitute a new paradigm in dc nanogrids. It exacerbates the dynamic analysis using traditional techniques. Therefore, the current work proposes behavioral modeling to perform system level analysis of a dc nanogrid-based DES. It relies only on the data acquired via measurements performed at the input–output terminals only. To verify the accuracy of the model, large signal disturbances are applied. The matching of results for the switch model and its behavioral model verifies the effectiveness of the proposed model.

Suggested Citation

  • Muhammad Saad & Yongfeng Ju & Husan Ali & Sami Ullah Jan & Dawar Awan & Shahbaz Khan & Abdul Wadood & Bakht Muhammad Khan & Akhtar Ali & Tahir Khurshaid, 2021. "Behavioral Modeling Paradigm for DC Nanogrid Based Distributed Energy Systems," Energies, MDPI, vol. 14(23), pages 1-20, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:7904-:d:687542
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/23/7904/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/23/7904/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maria Fotopoulou & Dimitrios Rakopoulos & Dimitrios Trigkas & Fotis Stergiopoulos & Orestis Blanas & Spyros Voutetakis, 2021. "State of the Art of Low and Medium Voltage Direct Current (DC) Microgrids," Energies, MDPI, vol. 14(18), pages 1-27, September.
    2. Burmester, Daniel & Rayudu, Ramesh & Seah, Winston & Akinyele, Daniel, 2017. "A review of nanogrid topologies and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 760-775.
    3. Liyuan Gao & Yao Liu & Huisong Ren & Josep M. Guerrero, 2017. "A DC Microgrid Coordinated Control Strategy Based on Integrator Current-Sharing," Energies, MDPI, vol. 10(8), pages 1-17, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ioannis Skouros & Athanasios Karlis, 2020. "A Study on the V2G Technology Incorporation in a DC Nanogrid and on the Provision of Voltage Regulation to the Power Grid," Energies, MDPI, vol. 13(10), pages 1-23, May.
    2. Vitor Fernão Pires & Armando Pires & Armando Cordeiro, 2023. "DC Microgrids: Benefits, Architectures, Perspectives and Challenges," Energies, MDPI, vol. 16(3), pages 1-20, January.
    3. Saeed Habibi & Ramin Rahimi & Mehdi Ferdowsi & Pourya Shamsi, 2021. "DC Bus Voltage Selection for a Grid-Connected Low-Voltage DC Residential Nanogrid Using Real Data with Modified Load Profiles," Energies, MDPI, vol. 14(21), pages 1-19, October.
    4. Lucas V. Bellinaso & Edivan L. Carvalho & Rafael Cardoso & Leandro Michels, 2021. "Price-Response Matrices Design Methodology for Electrical Energy Management Systems Based on DC Bus Signalling," Energies, MDPI, vol. 14(6), pages 1-19, March.
    5. Houssem Rafik Al-Hana Bouchekara & Mohammad Shoaib Shahriar & Muhammad Sharjeel Javaid & Yusuf Abubakar Sha’aban & Makbul Anwari Muhammad Ramli, 2021. "Multi-Objective Optimization of a Hybrid Nanogrid/Microgrid: Application to Desert Camps in Hafr Al-Batin," Energies, MDPI, vol. 14(5), pages 1-24, February.
    6. Al Faris Habibullah & Seung-Jin Yoon & Thuy Vi Tran & Yubin Kim & Dat Thanh Tran & Kyeong-Hwa Kim, 2022. "The Recent Development of Power Electronics and AC Machine Drive Systems," Energies, MDPI, vol. 15(21), pages 1-8, October.
    7. Zbigniew Sołjan & Maciej Zajkowski, 2022. "Extension and Correction of Budeanu Power Theory Based on Currents’ Physical Components (CPC) Theory for Single-Phase Systems," Energies, MDPI, vol. 15(21), pages 1-18, November.
    8. Thanh Van Nguyen & Kyeong-Hwa Kim, 2019. "Power Flow Control Strategy and Reliable DC-Link Voltage Restoration for DC Microgrid under Grid Fault Conditions," Sustainability, MDPI, vol. 11(14), pages 1-27, July.
    9. Mamur, Hayati & Bhuiyan, M.R.A. & Korkmaz, Fatih & Nil, Mustafa, 2018. "A review on bismuth telluride (Bi2Te3) nanostructure for thermoelectric applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4159-4169.
    10. Burgio, Alessandro & Menniti, Daniele & Sorrentino, Nicola & Pinnarelli, Anna & Motta, Michele, 2018. "A compact nanogrid for home applications with a behaviour-tree-based central controller," Applied Energy, Elsevier, vol. 225(C), pages 14-26.
    11. Yerasimos Yerasimou & Marios Kynigos & Venizelos Efthymiou & George E. Georghiou, 2021. "Design of a Smart Nanogrid for Increasing Energy Efficiency of Buildings," Energies, MDPI, vol. 14(12), pages 1-19, June.
    12. Yangfan Chen & Yu Zhang, 2023. "DC Transformers in DC Distribution Systems," Energies, MDPI, vol. 16(7), pages 1-19, March.
    13. Augusti Lindiya Susaikani & Subashini Nallusamy & Uma Dharmalingam & Yonis M. Buswig & Natarajan Prabaharan & Mohamed Salem, 2022. "Integrated PV–BESS-Fed High Gain Converter for an LED Lighting System in a Commercial Building," Sustainability, MDPI, vol. 14(19), pages 1-22, September.
    14. Robert Salas-Puente & Silvia Marzal & Raúl González-Medina & Emilio Figueres & Gabriel Garcera, 2017. "Experimental Study of a Centralized Control Strategy of a DC Microgrid Working in Grid Connected Mode," Energies, MDPI, vol. 10(10), pages 1-25, October.
    15. Robert Salas-Puente & Silvia Marzal & Raul Gonzalez-Medina & Emilio Figueres & Gabriel Garcera, 2018. "Practical Analysis and Design of a Battery Management System for a Grid-Connected DC Microgrid for the Reduction of the Tariff Cost and Battery Life Maximization," Energies, MDPI, vol. 11(7), pages 1-31, July.
    16. Jakob Nömm & Sarah K. Rönnberg & Math H. J. Bollen, 2018. "An Analysis of Frequency Variations and its Implications on Connected Equipment for a Nanogrid during Islanded Operation," Energies, MDPI, vol. 11(9), pages 1-13, September.
    17. Mohamed Zaery & Panbao Wang & Wei Wang & Dianguo Xu, 2022. "A Novel Optimal Power Allocation Control System with High Convergence Rate for DC Microgrids Cluster," Energies, MDPI, vol. 15(11), pages 1-22, May.
    18. Nur Najihah Abu Bakar & Josep M. Guerrero & Juan C. Vasquez & Najmeh Bazmohammadi & Yun Yu & Abdullah Abusorrah & Yusuf A. Al-Turki, 2021. "A Review of the Conceptualization and Operational Management of Seaport Microgrids on the Shore and Seaside," Energies, MDPI, vol. 14(23), pages 1-31, November.
    19. Daud Mustafa Minhas & Josef Meiers & Georg Frey, 2022. "Electric Vehicle Battery Storage Concentric Intelligent Home Energy Management System Using Real Life Data Sets," Energies, MDPI, vol. 15(5), pages 1-29, February.
    20. Jakob Nömm & Sarah K. Rönnberg & Math H. J. Bollen, 2019. "An Analysis of Voltage Quality in a Nanogrid during Islanded Operation," Energies, MDPI, vol. 12(4), pages 1-24, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:7904-:d:687542. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.