IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i7p1889-d158929.html
   My bibliography  Save this article

Practical Analysis and Design of a Battery Management System for a Grid-Connected DC Microgrid for the Reduction of the Tariff Cost and Battery Life Maximization

Author

Listed:
  • Robert Salas-Puente

    (Grupo de Sistemas Electrónicos Industriales del Departamento de Ingeniería Electrónica, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain)

  • Silvia Marzal

    (Grupo de Sistemas Electrónicos Industriales del Departamento de Ingeniería Electrónica, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain)

  • Raul Gonzalez-Medina

    (Grupo de Sistemas Electrónicos Industriales del Departamento de Ingeniería Electrónica, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain)

  • Emilio Figueres

    (Grupo de Sistemas Electrónicos Industriales del Departamento de Ingeniería Electrónica, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain)

  • Gabriel Garcera

    (Grupo de Sistemas Electrónicos Industriales del Departamento de Ingeniería Electrónica, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain)

Abstract

This study is focused on two areas: the design of a Battery Energy Storage System (BESS) for a grid-connected DC Microgrid and the power management of that microgrid. The power management is performed by a Microgrid Central Controller (MGCC). A Microgrid operator provides daily information to the MGCC about the photovoltaic generation profile, the load demand profile, and the real-time prices of the electricity in order to plan the power interchange between the BESS and the main grid, establishing the desired state of charge (SOC) of the batteries at any time. The main goals of the power management strategy under study are to minimize the cost of the electricity that is imported from the grid and to maximize battery life by means of an adequate charging procedure, which sets the charging rate as a function of the MG state. Experimental and simulation results in many realistic scenarios demonstrate that the proposed methodology achieves a proper power management of the DC microgrid.

Suggested Citation

  • Robert Salas-Puente & Silvia Marzal & Raul Gonzalez-Medina & Emilio Figueres & Gabriel Garcera, 2018. "Practical Analysis and Design of a Battery Management System for a Grid-Connected DC Microgrid for the Reduction of the Tariff Cost and Battery Life Maximization," Energies, MDPI, vol. 11(7), pages 1-31, July.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1889-:d:158929
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/7/1889/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/7/1889/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ricardo Velho & Miguel Beirão & Maria Do Rosário Calado & José Pombo & João Fermeiro & Sílvio Mariano, 2017. "Management System for Large Li-Ion Battery Packs with a New Adaptive Multistage Charging Method," Energies, MDPI, vol. 10(5), pages 1-21, May.
    2. Fangrong Xue & Zhi Ling & Yubing Yang & Xingpo Miao, 2017. "Design and Implementation of Novel Smart Battery Management System for FPGA Based Portable Electronic Devices," Energies, MDPI, vol. 10(3), pages 1-14, February.
    3. Hussein, Ala A. & Fardoun, Abbas A., 2015. "Design considerations and performance evaluation of outdoor PV battery chargers," Renewable Energy, Elsevier, vol. 82(C), pages 85-91.
    4. Robert Salas-Puente & Silvia Marzal & Raúl González-Medina & Emilio Figueres & Gabriel Garcera, 2017. "Experimental Study of a Centralized Control Strategy of a DC Microgrid Working in Grid Connected Mode," Energies, MDPI, vol. 10(10), pages 1-25, October.
    5. Jongbok Baek & Wooin Choi & Suyong Chae, 2017. "Distributed Control Strategy for Autonomous Operation of Hybrid AC/DC Microgrid," Energies, MDPI, vol. 10(3), pages 1-16, March.
    6. Jingpeng Yue & Zhijian Hu & Chendan Li & Juan C. Vasquez & Josep M. Guerrero, 2017. "Economic Power Schedule and Transactive Energy through an Intelligent Centralized Energy Management System for a DC Residential Distribution System," Energies, MDPI, vol. 10(7), pages 1-14, July.
    7. Holger C. Hesse & Michael Schimpe & Daniel Kucevic & Andreas Jossen, 2017. "Lithium-Ion Battery Storage for the Grid—A Review of Stationary Battery Storage System Design Tailored for Applications in Modern Power Grids," Energies, MDPI, vol. 10(12), pages 1-42, December.
    8. Silvia Marzal & Raul González-Medina & Robert Salas-Puente & Emilio Figueres & Gabriel Garcerá, 2017. "A Novel Locality Algorithm and Peer-to-Peer Communication Infrastructure for Optimizing Network Performance in Smart Microgrids," Energies, MDPI, vol. 10(9), pages 1-25, August.
    9. Kaur, Amandeep & Kaushal, Jitender & Basak, Prasenjit, 2016. "A review on microgrid central controller," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 338-345.
    10. Sujitha, N. & Krithiga, S., 2017. "RES based EV battery charging system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 978-988.
    11. Daehyun Kim & Taedong Goh & Minjun Park & Sang Woo Kim, 2015. "Fuzzy Sliding Mode Observer with Grey Prediction for the Estimation of the State-of-Charge of a Lithium-Ion Battery," Energies, MDPI, vol. 8(11), pages 1-20, November.
    12. Gamarra, Carlos & Guerrero, Josep M., 2015. "Computational optimization techniques applied to microgrids planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 413-424.
    13. Zia, Muhammad Fahad & Elbouchikhi, Elhoussin & Benbouzid, Mohamed, 2018. "Microgrids energy management systems: A critical review on methods, solutions, and prospects," Applied Energy, Elsevier, vol. 222(C), pages 1033-1055.
    14. Liyuan Gao & Yao Liu & Huisong Ren & Josep M. Guerrero, 2017. "A DC Microgrid Coordinated Control Strategy Based on Integrator Current-Sharing," Energies, MDPI, vol. 10(8), pages 1-17, August.
    15. Yinjiao Xing & Eden W. M. Ma & Kwok L. Tsui & Michael Pecht, 2011. "Battery Management Systems in Electric and Hybrid Vehicles," Energies, MDPI, vol. 4(11), pages 1-18, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kamil Khan & Ahmad Kamal & Abdul Basit & Tanvir Ahmad & Haider Ali & Anwar Ali, 2019. "Economic Load Dispatch of a Grid-Tied DC Microgrid Using the Interior Search Algorithm," Energies, MDPI, vol. 12(4), pages 1-13, February.
    2. Md Shafiullah & Akib Mostabe Refat & Md Ershadul Haque & Dewan Mabrur Hasan Chowdhury & Md Sanower Hossain & Abdullah G. Alharbi & Md Shafiul Alam & Amjad Ali & Shorab Hossain, 2022. "Review of Recent Developments in Microgrid Energy Management Strategies," Sustainability, MDPI, vol. 14(22), pages 1-30, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert Salas-Puente & Silvia Marzal & Raúl González-Medina & Emilio Figueres & Gabriel Garcera, 2017. "Experimental Study of a Centralized Control Strategy of a DC Microgrid Working in Grid Connected Mode," Energies, MDPI, vol. 10(10), pages 1-25, October.
    2. Thanh Van Nguyen & Kyeong-Hwa Kim, 2019. "Power Flow Control Strategy and Reliable DC-Link Voltage Restoration for DC Microgrid under Grid Fault Conditions," Sustainability, MDPI, vol. 11(14), pages 1-27, July.
    3. Robert Antonio Salas-Puente & Silvia Marzal & Raúl González-Medina & Emilio Figueres & Gabriel Garcera, 2018. "Power Management of the DC Bus Connected Converters in a Hybrid AC/DC Microgrid Tied to the Main Grid," Energies, MDPI, vol. 11(4), pages 1-22, March.
    4. Haupt, Leon & Schöpf, Michael & Wederhake, Lars & Weibelzahl, Martin, 2020. "The influence of electric vehicle charging strategies on the sizing of electrical energy storage systems in charging hub microgrids," Applied Energy, Elsevier, vol. 273(C).
    5. Emmanuel Hernández-Mayoral & Manuel Madrigal-Martínez & Jesús D. Mina-Antonio & Reynaldo Iracheta-Cortez & Jesús A. Enríquez-Santiago & Omar Rodríguez-Rivera & Gregorio Martínez-Reyes & Edwin Mendoza-, 2023. "A Comprehensive Review on Power-Quality Issues, Optimization Techniques, and Control Strategies of Microgrid Based on Renewable Energy Sources," Sustainability, MDPI, vol. 15(12), pages 1-53, June.
    6. Giuseppe Barone & Giovanni Brusco & Alessandro Burgio & Daniele Menniti & Anna Pinnarelli & Michele Motta & Nicola Sorrentino & Pasquale Vizza, 2018. "A Real-Life Application of a Smart User Network," Energies, MDPI, vol. 11(12), pages 1-23, December.
    7. Polleux, Louis & Guerassimoff, Gilles & Marmorat, Jean-Paul & Sandoval-Moreno, John & Schuhler, Thierry, 2022. "An overview of the challenges of solar power integration in isolated industrial microgrids with reliability constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    8. Xu, Zhirong & Yang, Ping & Zheng, Chengli & Zhang, Yujia & Peng, Jiajun & Zeng, Zhiji, 2018. "Analysis on the organization and Development of multi-microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2204-2216.
    9. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
    10. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    11. Krawinkler, Andreas & Breitenecker, Robert J. & Maresch, Daniela, 2022. "Heuristic decision-making in the green energy context:Bringing together simple rules and data-driven mathematical optimization," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    12. Nosratabadi, Seyyed Mostafa & Hooshmand, Rahmat-Allah & Gholipour, Eskandar, 2017. "A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 341-363.
    13. Sadaqat Ali & Zhixue Zheng & Michel Aillerie & Jean-Paul Sawicki & Marie-Cécile Péra & Daniel Hissel, 2021. "A Review of DC Microgrid Energy Management Systems Dedicated to Residential Applications," Energies, MDPI, vol. 14(14), pages 1-26, July.
    14. Yamashita, Daniela Yassuda & Vechiu, Ionel & Gaubert, Jean-Paul, 2020. "A review of hierarchical control for building microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    15. Hirsch, Adam & Parag, Yael & Guerrero, Josep, 2018. "Microgrids: A review of technologies, key drivers, and outstanding issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 402-411.
    16. Arnaud Devie & George Baure & Matthieu Dubarry, 2018. "Intrinsic Variability in the Degradation of a Batch of Commercial 18650 Lithium-Ion Cells," Energies, MDPI, vol. 11(5), pages 1-14, April.
    17. Roslan, M.F. & Hannan, M.A. & Ker, Pin Jern & Uddin, M.N., 2019. "Microgrid control methods toward achieving sustainable energy management," Applied Energy, Elsevier, vol. 240(C), pages 583-607.
    18. Maen Z. Kreishan & Ahmed F. Zobaa, 2021. "Optimal Allocation and Operation of Droop-Controlled Islanded Microgrids: A Review," Energies, MDPI, vol. 14(15), pages 1-45, July.
    19. Oussama Ouramdane & Elhoussin Elbouchikhi & Yassine Amirat & Ehsan Sedgh Gooya, 2021. "Optimal Sizing and Energy Management of Microgrids with Vehicle-to-Grid Technology: A Critical Review and Future Trends," Energies, MDPI, vol. 14(14), pages 1-45, July.
    20. Koirala, Binod Prasad & van Oost, Ellen & van der Windt, Henny, 2018. "Community energy storage: A responsible innovation towards a sustainable energy system?," Applied Energy, Elsevier, vol. 231(C), pages 570-585.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1889-:d:158929. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.