IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i22p7779-d683479.html
   My bibliography  Save this article

A Review of Supercapacitors: Materials Design, Modification, and Applications

Author

Listed:
  • Muhammad Yaseen

    (Department of Chemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan)

  • Muhammad Arif Khan Khattak

    (Department of Chemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan)

  • Muhammad Humayun

    (Wuhan National Laboratory for Optoelectronics, School of Optical & Electronics Information, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Muhammad Usman

    (Inter Disciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia)

  • Syed Shaheen Shah

    (Inter Disciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia)

  • Shaista Bibi

    (Department of Chemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan)

  • Bakhtiar Syed Ul Hasnain

    (School of Material Science and Engineering, Wuhan University of Technology, Wuhan 430070, China)

  • Shah Masood Ahmad

    (Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan)

  • Abbas Khan

    (Department of Chemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan)

  • Nasrullah Shah

    (Department of Chemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan)

  • Asif Ali Tahir

    (Environment and Sustainability Institute, University of Exeter, Penryn TR10 9FE, UK)

  • Habib Ullah

    (Environment and Sustainability Institute, University of Exeter, Penryn TR10 9FE, UK)

Abstract

Supercapacitors (SCs) have received much interest due to their enhanced electrochemical performance, superior cycling life, excellent specific power, and fast charging–discharging rate. The energy density of SCs is comparable to batteries; however, their power density and cyclability are higher by several orders of magnitude relative to batteries, making them a flexible and compromising energy storage alternative, provided a proper design and efficient materials are used. This review emphasizes various types of SCs, such as electrochemical double-layer capacitors, hybrid supercapacitors, and pseudo-supercapacitors. Furthermore, various synthesis strategies, including sol-gel, electro-polymerization, hydrothermal, co-precipitation, chemical vapor deposition, direct coating, vacuum filtration, de-alloying, microwave auxiliary, in situ polymerization, electro-spinning, silar, carbonization, dipping, and drying methods, are discussed. Furthermore, various functionalizations of SC electrode materials are summarized. In addition to their potential applications, brief insights into the recent advances and associated problems are provided, along with conclusions. This review is a noteworthy addition because of its simplicity and conciseness with regard to SCs, which can be helpful for researchers who are not directly involved in electrochemical energy storage.

Suggested Citation

  • Muhammad Yaseen & Muhammad Arif Khan Khattak & Muhammad Humayun & Muhammad Usman & Syed Shaheen Shah & Shaista Bibi & Bakhtiar Syed Ul Hasnain & Shah Masood Ahmad & Abbas Khan & Nasrullah Shah & Asif , 2021. "A Review of Supercapacitors: Materials Design, Modification, and Applications," Energies, MDPI, vol. 14(22), pages 1-40, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7779-:d:683479
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/22/7779/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/22/7779/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. González, Ander & Goikolea, Eider & Barrena, Jon Andoni & Mysyk, Roman, 2016. "Review on supercapacitors: Technologies and materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1189-1206.
    2. Muhammad Usman & Muhammad Humayun & Syed Shaheen Shah & Habib Ullah & Asif A Tahir & Abbas Khan & Habib Ullah, 2021. "Bismuth-Graphene Nanohybrids: Synthesis, Reaction Mechanisms, and Photocatalytic Applications—A Review," Energies, MDPI, vol. 14(8), pages 1-36, April.
    3. S. Srinivasa Rao & Ikkurthi Kanaka Durga & Bandari Naresh & Bak Jin-Soo & T.N.V. Krishna & Cho In-Ho & Jin-Woo Ahn & Hee-Je Kim, 2018. "One-Pot Hydrothermal Synthesis of Novel Cu-MnS with PVP Cabbage-Like Nanostructures for High-Performance Supercapacitors," Energies, MDPI, vol. 11(6), pages 1-14, June.
    4. Chao Li & Md. Monirul Islam & Julian Moore & Joseph Sleppy & Caleb Morrison & Konstantin Konstantinov & Shi Xue Dou & Chait Renduchintala & Jayan Thomas, 2016. "Wearable energy-smart ribbons for synchronous energy harvest and storage," Nature Communications, Nature, vol. 7(1), pages 1-10, December.
    5. Ding, Yan & Li, Yunchao & Dai, Yujie & Han, Xinhong & Xing, Bo & Zhu, Lingjun & Qiu, Kunzan & Wang, Shurong, 2021. "A novel approach for preparing in-situ nitrogen doped carbon via pyrolysis of bean pulp for supercapacitors," Energy, Elsevier, vol. 216(C).
    6. Xu Peng & Huili Liu & Qin Yin & Junchi Wu & Pengzuo Chen & Guangzhao Zhang & Guangming Liu & Changzheng Wu & Yi Xie, 2016. "A zwitterionic gel electrolyte for efficient solid-state supercapacitors," Nature Communications, Nature, vol. 7(1), pages 1-8, September.
    7. Muhammad Yaseen & Muhammad Humayun & Abbas Khan & Muhammad Usman & Habib Ullah & Asif Ali Tahir & Habib Ullah, 2021. "Preparation, Functionalization, Modification, and Applications of Nanostructured Gold: A Critical Review," Energies, MDPI, vol. 14(5), pages 1-88, February.
    8. Anil Kumar Yedluri & Tarugu Anitha & Hee-Je Kim, 2019. "Fabrication of Hierarchical NiMoO 4 /NiMoO 4 Nanoflowers on Highly Conductive Flexible Nickel Foam Substrate as a Capacitive Electrode Material for Supercapacitors with Enhanced Electrochemical Perfor," Energies, MDPI, vol. 12(6), pages 1-11, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kanakaraj Aruchamy & Athinarayanan Balasankar & Subramaniyan Ramasundaram & Tae Hwan Oh, 2023. "Recent Design and Synthesis Strategies for High-Performance Supercapacitors Utilizing ZnCo 2 O 4 -Based Electrode Materials," Energies, MDPI, vol. 16(15), pages 1-36, July.
    2. Pavlos Papageorgiou & Konstantinos Oureilidis & Anna Tsakiri & Georgios Christoforidis, 2023. "A Modified Decentralized Droop Control Method to Eliminate Battery Short-Term Operation in a Hybrid Supercapacitor/Battery Energy Storage System," Energies, MDPI, vol. 16(6), pages 1-21, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olabi, Abdul Ghani & Abbas, Qaisar & Al Makky, Ahmed & Abdelkareem, Mohammad Ali, 2022. "Supercapacitors as next generation energy storage devices: Properties and applications," Energy, Elsevier, vol. 248(C).
    2. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    3. Caizán-Juanarena, Leire & Sleutels, Tom & Borsje, Casper & ter Heijne, Annemiek, 2020. "Considerations for application of granular activated carbon as capacitive bioanode in bioelectrochemical systems," Renewable Energy, Elsevier, vol. 157(C), pages 782-792.
    4. Chen, Yi-di & Li, Suping & Ho, Shih-Hsin & Wang, Chengyu & Lin, Yen-Chang & Nagarajan, Dillirani & Chang, Jo-Shu & Ren, Nan-qi, 2018. "Integration of sludge digestion and microalgae cultivation for enhancing bioenergy and biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 76-90.
    5. Niaz Ali Khan & Muhammad Humayun & Muhammad Usman & Zahid Ali Ghazi & Abdul Naeem & Abbas Khan & Asim Laeeq Khan & Asif Ali Tahir & Habib Ullah, 2021. "Structural Characteristics and Environmental Applications of Covalent Organic Frameworks," Energies, MDPI, vol. 14(8), pages 1-21, April.
    6. Devadiga, Dheeraj & Selvakumar, Muthu & Shetty, Prakasha & Santosh, Mysore Sridhar, 2022. "The integration of flexible dye-sensitized solar cells and storage devices towards wearable self-charging power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    7. Celiktas, Melih Soner & Alptekin, Fikret Muge, 2019. "Conversion of model biomass to carbon-based material with high conductivity by using carbonization," Energy, Elsevier, vol. 188(C).
    8. Chen, Tingting & Luo, Lu & Luo, Lingcong & Deng, Jianping & Wu, Xi & Fan, Mizi & Du, Guanben & Weigang Zhao,, 2021. "High energy density supercapacitors with hierarchical nitrogen-doped porous carbon as active material obtained from bio-waste," Renewable Energy, Elsevier, vol. 175(C), pages 760-769.
    9. Jing, Wenlong & Lai, Chean Hung & Wong, Wallace S.H. & Wong, M.L. Dennis, 2018. "A comprehensive study of battery-supercapacitor hybrid energy storage system for standalone PV power system in rural electrification," Applied Energy, Elsevier, vol. 224(C), pages 340-356.
    10. Dou, Shumei & Li, Ping & Tan, Dan & Li, Huiqin & Ren, Lijun & Wei, Fenyan, 2021. "Synthesis and capacitance performances of Ni–Mn-Oxides as electrode materials for high-performance supercapacitors," Energy, Elsevier, vol. 227(C).
    11. Muhammad Usman & Muhammad Humayun & Syed Shaheen Shah & Habib Ullah & Asif A Tahir & Abbas Khan & Habib Ullah, 2021. "Bismuth-Graphene Nanohybrids: Synthesis, Reaction Mechanisms, and Photocatalytic Applications—A Review," Energies, MDPI, vol. 14(8), pages 1-36, April.
    12. Hu, Sheng-Chun & Cheng, Jie & Wang, Wu-Ping & Sun, Guo-Tao & Hu, Li-Le & Zhu, Ming-Qiang & Huang, Xiao-Hua, 2021. "Structural changes and electrochemical properties of lacquer wood activated carbon prepared by phosphoric acid-chemical activation for supercapacitor applications," Renewable Energy, Elsevier, vol. 177(C), pages 82-94.
    13. Yang, Yang & Xing, Kai & Yan, Minyue & Zhu, Xun & Ye, Dingding & Chen, Rong & Liao, Qiang, 2023. "A potential flexible fuel cell with dual-functional hydrogel based on multi-component crosslinked hybrid polyvinyl alcohol," Energy, Elsevier, vol. 265(C).
    14. Alencar Franco de Souza & Fernando Lessa Tofoli & Enio Roberto Ribeiro, 2021. "Switched Capacitor DC-DC Converters: A Survey on the Main Topologies, Design Characteristics, and Applications," Energies, MDPI, vol. 14(8), pages 1-33, April.
    15. Thanh Duy Cam Ha & Heehyeon Lee & Yeo Kyung Kang & Kyunghan Ahn & Hyeong Min Jin & In Chung & Byungman Kang & Youngtak Oh & Myung-Gil Kim, 2022. "Multiscale structural control of thiostannate chalcogels with two-dimensional crystalline constituents," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    16. Noor Afeefah Nordin & Mohamed Nainar Mohamed Ansari & Saifuddin M. Nomanbhay & Nasri A. Hamid & Nadia M. L. Tan & Zainudin Yahya & Izhan Abdullah, 2021. "Integrating Photovoltaic (PV) Solar Cells and Supercapacitors for Sustainable Energy Devices: A Review," Energies, MDPI, vol. 14(21), pages 1-20, November.
    17. Daniel Rueda-García & María del Rocío Rodríguez-Laguna & Emigdio Chávez-Angel & Deepak P. Dubal & Zahilia Cabán-Huertas & Raúl Benages-Vilau & Pedro Gómez-Romero, 2019. "From Thermal to Electroactive Graphene Nanofluids," Energies, MDPI, vol. 12(23), pages 1-11, November.
    18. Cheng, Jie & Hu, Sheng-Chun & Sun, Guo-Tao & Kang, Kang & Zhu, Ming-Qiang & Geng, Zeng-Chao, 2021. "Comparison of activated carbons prepared by one-step and two-step chemical activation process based on cotton stalk for supercapacitors application," Energy, Elsevier, vol. 215(PB).
    19. Fabio Corti & Abdelazeem Hassan Shehata & Antonino Laudani & Ermanno Cardelli, 2021. "Design and Comparison of the Performance of 12-Pulse Rectifiers for Aerospace Applications," Energies, MDPI, vol. 14(19), pages 1-23, October.
    20. Dehghani-Sanij, A.R. & Tharumalingam, E. & Dusseault, M.B. & Fraser, R., 2019. "Study of energy storage systems and environmental challenges of batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 192-208.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7779-:d:683479. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.