IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7130-d669716.html
   My bibliography  Save this article

Influence of Equivalent Circuit Resistances on Operating Parameters on Three-Phase Induction Motors with Powers up to 50 kW

Author

Listed:
  • Marcel Torrent

    (Grupo de Accionamientos Eléctricos con Conmutación Electrónica GAECE, Department of Electrical Engineering (DEE), Escuela Politécnica Superior de Ingeniería de Vilanova i la Geltrú (EPSEVG), Universitat Politècnica de Catalunya—UPC Barcelonatech, Víctor Balaguer 1, 08800 Vilanova i la Geltrú, Spain)

  • Balduí Blanqué

    (Grupo de Accionamientos Eléctricos con Conmutación Electrónica GAECE, Department of Electrical Engineering (DEE), Escuela Politécnica Superior de Ingeniería de Vilanova i la Geltrú (EPSEVG), Universitat Politècnica de Catalunya—UPC Barcelonatech, Víctor Balaguer 1, 08800 Vilanova i la Geltrú, Spain)

Abstract

This work shows the results obtained from studying the influence of equivalent circuit resistances on three-phase induction motors. The stator resistance, rotor resistance, and iron losses resistance affect the different motor operating variables (output power, current, speed, power factor, starting ratios, and maximum torque). These influences have been quantified, paying particular attention to the losses affected and their impact on efficiency. The study carried out does not apply optimization techniques. It evaluates the different influences of the equivalent circuit’s different resistances on its operation by evaluating applicable constructive modifications concerning available motors. The work has been limited to three-phase induction motors up to 50 kW and low voltage, with the nominal powers of the selected motors being 0.25 kW, 1.5 kW, 7.5 kW, 22 kW, and 45 kW. The tools used to carry out the study are analyzing the equivalent circuit and the simulation of the electromagnetic structure using a finite-element program. The variations proposed in each resistance for all the motors studied is not purely theoretical, as it is based on applying feasible constructive modifications, appropriately analyzed and simulated. These modifications are the variation of the conductor diameter in the stator coils, the change of the section of the rotor cage, and the selection of different ferromagnetic steel types.

Suggested Citation

  • Marcel Torrent & Balduí Blanqué, 2021. "Influence of Equivalent Circuit Resistances on Operating Parameters on Three-Phase Induction Motors with Powers up to 50 kW," Energies, MDPI, vol. 14(21), pages 1-22, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7130-:d:669716
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7130/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7130/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aswin Balasubramanian & Floran Martin & Md Masum Billah & Osaruyi Osemwinyen & Anouar Belahcen, 2021. "Application of Surrogate Optimization Routine with Clustering Technique for Optimal Design of an Induction Motor," Energies, MDPI, vol. 14(16), pages 1-19, August.
    2. Saidur, R., 2010. "A review on electrical motors energy use and energy savings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 877-898, April.
    3. Chih-Hong Lin, 2020. "Altered Grey Wolf Optimization and Taguchi Method with FEA for Six-Phase Copper Squirrel Cage Rotor Induction Motor Design," Energies, MDPI, vol. 13(9), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mathew Habyarimana & David George Dorrell & Remmy Musumpuka, 2022. "Reduction of Starting Current in Large Induction Motors," Energies, MDPI, vol. 15(10), pages 1-41, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yoon, Hae-Sung & Kim, Eun-Seob & Kim, Min-Soo & Lee, Jang-Yeob & Lee, Gyu-Bong & Ahn, Sung-Hoon, 2015. "Towards greener machine tools – A review on energy saving strategies and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 870-891.
    2. Miguel Castro Oliveira & Muriel Iten & Pedro L. Cruz & Helena Monteiro, 2020. "Review on Energy Efficiency Progresses, Technologies and Strategies in the Ceramic Sector Focusing on Waste Heat Recovery," Energies, MDPI, vol. 13(22), pages 1-24, November.
    3. Md Junayed Hasan & Jong-Myon Kim, 2019. "Fault Detection of a Spherical Tank Using a Genetic Algorithm-Based Hybrid Feature Pool and k-Nearest Neighbor Algorithm," Energies, MDPI, vol. 12(6), pages 1-14, March.
    4. Nogueira Vilanova, Mateus Ricardo & Perrella Balestieri, José Antônio, 2014. "Energy and hydraulic efficiency in conventional water supply systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 701-714.
    5. Madlool, N.A. & Saidur, R. & Rahim, N.A. & Kamalisarvestani, M., 2013. "An overview of energy savings measures for cement industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 18-29.
    6. Yilmaz, Murat, 2015. "Limitations/capabilities of electric machine technologies and modeling approaches for electric motor design and analysis in plug-in electric vehicle applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 80-99.
    7. Mekhilef, S. & Saidur, R. & Safari, A., 2011. "A review on solar energy use in industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1777-1790, May.
    8. Firth, Anton & Zhang, Bo & Yang, Aidong, 2019. "Quantification of global waste heat and its environmental effects," Applied Energy, Elsevier, vol. 235(C), pages 1314-1334.
    9. Thirugnanasambandam, M. & Hasanuzzaman, M. & Saidur, R. & Ali, M.B. & Rajakarunakaran, S. & Devaraj, D. & Rahim, N.A., 2011. "Analysis of electrical motors load factors and energy savings in an Indian cement industry," Energy, Elsevier, vol. 36(7), pages 4307-4314.
    10. Wang, Zanxin & Wei, Wei, 2017. "External cost of photovoltaic oriented silicon production: A case in China," Energy Policy, Elsevier, vol. 107(C), pages 437-447.
    11. Saidur, R. & Hossain, M.S. & Islam, M.R. & Fayaz, H. & Mohammed, H.A., 2011. "A review on kiln system modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2487-2500, June.
    12. Popa, Cezar & Pentiuc, Radu, 2012. "Analysis of a new induction thermal converter for heating," Energy, Elsevier, vol. 42(1), pages 81-93.
    13. Gang Lei & Jianguo Zhu & Youguang Guo & Chengcheng Liu & Bo Ma, 2017. "A Review of Design Optimization Methods for Electrical Machines," Energies, MDPI, vol. 10(12), pages 1-31, November.
    14. Hosain, Md Lokman & Bel Fdhila, Rebei & Rönnberg, Kristian, 2017. "Taylor-Couette flow and transient heat transfer inside the annulus air-gap of rotating electrical machines," Applied Energy, Elsevier, vol. 207(C), pages 624-633.
    15. Garzozi, A. & Greenblatt, D., 2022. "Exploiting the Coandă effect for wind-driven reciprocating RO desalination," Energy, Elsevier, vol. 238(PC).
    16. Saidur, R. & Rezaei, M. & Muzammil, W.K. & Hassan, M.H. & Paria, S. & Hasanuzzaman, M., 2012. "Technologies to recover exhaust heat from internal combustion engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5649-5659.
    17. Mette Talseth Solnørdal & Lene Foss, 2018. "Closing the Energy Efficiency Gap—A Systematic Review of Empirical Articles on Drivers to Energy Efficiency in Manufacturing Firms," Energies, MDPI, vol. 11(3), pages 1-30, February.
    18. Trianni, Andrea & Cagno, Enrico & De Donatis, Alessio, 2014. "A framework to characterize energy efficiency measures," Applied Energy, Elsevier, vol. 118(C), pages 207-220.
    19. Maria Dems & Krzysztof Komeza & Jacek Szulakowski & Witold Kubiak, 2022. "Increase the Efficiency of an Induction Motor Feed from Inverter for Low Frequencies by Combining Design and Control Improvements," Energies, MDPI, vol. 15(2), pages 1-17, January.
    20. Shiza Mushtaq & M. M. Manjurul Islam & Muhammad Sohaib, 2021. "Deep Learning Aided Data-Driven Fault Diagnosis of Rotatory Machine: A Comprehensive Review," Energies, MDPI, vol. 14(16), pages 1-24, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7130-:d:669716. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.