IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p6901-d661324.html
   My bibliography  Save this article

Remote Microgrids for Energy Access in Indonesia—Part II: PV Microgrids and a Technology Outlook

Author

Listed:
  • Desmon Simatupang

    (Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), University of Twente, 7522 NB Enschede, The Netherlands)

  • Ilman Sulaeman

    (Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), University of Twente, 7522 NB Enschede, The Netherlands)

  • Niek Moonen

    (Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), University of Twente, 7522 NB Enschede, The Netherlands)

  • Rinaldi Maulana

    (Perusahaan Listrik Negara (PLN), Jakarta 15418, Indonesia)

  • Safitri Baharuddin

    (NZMATES, Kota Ambon 97121, Indonesia)

  • Amalia Suryani

    (Faculty of Economics, Leipzig University, 04109 Leipzig, Germany)

  • Jelena Popovic

    (Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), University of Twente, 7522 NB Enschede, The Netherlands
    Klimop Energy, 7001 EX Doetinchem, The Netherlands)

  • Frank Leferink

    (Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), University of Twente, 7522 NB Enschede, The Netherlands
    Thales Netherlands, 7554 RR Hengelo, The Netherlands)

Abstract

This paper is the companion paper of Remote Microgrids for Energy Access in Indonesia “ Part I: scaling and sustainability challenges and a technology outlook ”. This part II investigates the issues of photovoltaic (PV) systems with respect to the planning, design, and operation, and maintenance phases in microgrids in Indonesia. The technology outlooks are also included as PV has an important role in providing electricity in the underdeveloped, isolated, and border areas. The data in this paper are from PV microgrids located in Maluku and North Maluku, which are two provinces where there is barely any grid connection available and thus very dependent on remote microgrids. The data are obtained from interviews with Perusahaan Listrik Negara (PLN) and NZMATES, which are an Indonesian utility company and a program for supporting role for the PV systems in Maluku funded by New Zealand respectively. Common issues with respect to reliability and sustainability are identified based on the provided data. Advanced technologies to increase reliability and sustainability are also presented in this paper as a technology outlook. Among these solutions are online monitoring systems, PV and battery lifetime estimation, load forecasting strategies, and PV inverters technology.

Suggested Citation

  • Desmon Simatupang & Ilman Sulaeman & Niek Moonen & Rinaldi Maulana & Safitri Baharuddin & Amalia Suryani & Jelena Popovic & Frank Leferink, 2021. "Remote Microgrids for Energy Access in Indonesia—Part II: PV Microgrids and a Technology Outlook," Energies, MDPI, vol. 14(21), pages 1-18, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:6901-:d:661324
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/6901/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/6901/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shuyu Dai & Dongxiao Niu & Yan Li, 2018. "Daily Peak Load Forecasting Based on Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and Support Vector Machine Optimized by Modified Grey Wolf Optimization Algorithm," Energies, MDPI, vol. 11(1), pages 1-25, January.
    2. Alessandro Niccolai & Francesco Grimaccia & Sonia Leva, 2019. "Advanced Asset Management Tools in Photovoltaic Plant Monitoring: UAV-Based Digital Mapping," Energies, MDPI, vol. 12(24), pages 1-14, December.
    3. Desmon Petrus Simatupang & Jaeho Choi, 2018. "Integrated Photovoltaic Inverters Based on Unified Power Quality Conditioner with Voltage Compensation for Submarine Distribution System," Energies, MDPI, vol. 11(11), pages 1-22, October.
    4. Happy Aprillia & Hong-Tzer Yang & Chao-Ming Huang, 2019. "Optimal Decomposition and Reconstruction of Discrete Wavelet Transformation for Short-Term Load Forecasting," Energies, MDPI, vol. 12(24), pages 1-23, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammed Abdullah H. Alshehri & Youguang Guo & Gang Lei, 2023. "Renewable-Energy-Based Microgrid Design and Feasibility Analysis for King Saud University Campus, Riyadh," Sustainability, MDPI, vol. 15(13), pages 1-24, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ibrahim Salem Jahan & Vaclav Snasel & Stanislav Misak, 2020. "Intelligent Systems for Power Load Forecasting: A Study Review," Energies, MDPI, vol. 13(22), pages 1-12, November.
    2. Hang Yin & Zeyu Wu & Junchao Wu & Junjie Jiang & Yalin Chen & Mingxuan Chen & Shixuan Luo & Lijun Gao, 2023. "A Hybrid Medium and Long-Term Relative Humidity Point and Interval Prediction Method for Intensive Poultry Farming," Mathematics, MDPI, vol. 11(14), pages 1-22, July.
    3. Mariusz T. Sarniak, 2020. "Researches of the Impact of the Nominal Power Ratio and Environmental Conditions on the Efficiency of the Photovoltaic System: A Case Study for Poland in Central Europe," Sustainability, MDPI, vol. 12(15), pages 1-15, July.
    4. Mengqi Zhao & Xiaoling Wang & Jia Yu & Lei Bi & Yao Xiao & Jun Zhang, 2020. "Optimization of Construction Duration and Schedule Robustness Based on Hybrid Grey Wolf Optimizer with Sine Cosine Algorithm," Energies, MDPI, vol. 13(1), pages 1-17, January.
    5. Yingrui Zhou & Taiyong Li & Jiayi Shi & Zijie Qian, 2019. "A CEEMDAN and XGBOOST-Based Approach to Forecast Crude Oil Prices," Complexity, Hindawi, vol. 2019, pages 1-15, February.
    6. Dongsheng Yang & Zhanchao Ma & Xiaoting Gao & Zhuang Ma & Enchang Cui, 2019. "Control Strategy of Intergrated Photovoltaic-UPQC System for DC-Bus Voltage Stability and Voltage Sags Compensation," Energies, MDPI, vol. 12(20), pages 1-21, October.
    7. Xie, Gang & Qian, Yatong & Wang, Shouyang, 2020. "A decomposition-ensemble approach for tourism forecasting," Annals of Tourism Research, Elsevier, vol. 81(C).
    8. Gabriele Roggi & Alessandro Niccolai & Francesco Grimaccia & Marco Lovera, 2020. "A Computer Vision Line-Tracking Algorithm for Automatic UAV Photovoltaic Plants Monitoring Applications," Energies, MDPI, vol. 13(4), pages 1-15, February.
    9. Dong, Yingchao & Zhang, Hongli & Wang, Cong & Zhou, Xiaojun, 2021. "A novel hybrid model based on Bernstein polynomial with mixture of Gaussians for wind power forecasting," Applied Energy, Elsevier, vol. 286(C).
    10. Haben, Stephen & Arora, Siddharth & Giasemidis, Georgios & Voss, Marcus & Vukadinović Greetham, Danica, 2021. "Review of low voltage load forecasting: Methods, applications, and recommendations," Applied Energy, Elsevier, vol. 304(C).
    11. Bibi Ibrahim & Luis Rabelo, 2021. "A Deep Learning Approach for Peak Load Forecasting: A Case Study on Panama," Energies, MDPI, vol. 14(11), pages 1-26, May.
    12. Jieyun Zheng & Linyao Zhang & Jinpeng Chen & Guilian Wu & Shiyuan Ni & Zhijian Hu & Changhong Weng & Zhi Chen, 2021. "Multiple-Load Forecasting for Integrated Energy System Based on Copula-DBiLSTM," Energies, MDPI, vol. 14(8), pages 1-14, April.
    13. Xu, Shuojiang & Chan, Hing Kai & Zhang, Tiantian, 2019. "Forecasting the demand of the aviation industry using hybrid time series SARIMA-SVR approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 169-180.
    14. Hafiza Mamona Nazir & Ijaz Hussain & Muhammad Faisal & Alaa Mohamd Shoukry & Showkat Gani & Ishfaq Ahmad, 2019. "Development of Multidecomposition Hybrid Model for Hydrological Time Series Analysis," Complexity, Hindawi, vol. 2019, pages 1-14, January.
    15. Yajing Gao & Shixiao Guo & Jiafeng Ren & Zheng Zhao & Ali Ehsan & Yanan Zheng, 2018. "An Electric Bus Power Consumption Model and Optimization of Charging Scheduling Concerning Multi-External Factors," Energies, MDPI, vol. 11(8), pages 1-17, August.
    16. Jamei, Mehdi & Maroufpoor, Saman & Aminpour, Younes & Karbasi, Masoud & Malik, Anurag & Karimi, Bakhtiar, 2022. "Developing hybrid data-intelligent method using Boruta-random forest optimizer for simulation of nitrate distribution pattern," Agricultural Water Management, Elsevier, vol. 270(C).
    17. Mohamed Massaoudi & Shady S. Refaat & Haitham Abu-Rub & Ines Chihi & Fakhreddine S. Oueslati, 2020. "PLS-CNN-BiLSTM: An End-to-End Algorithm-Based Savitzky–Golay Smoothing and Evolution Strategy for Load Forecasting," Energies, MDPI, vol. 13(20), pages 1-29, October.
    18. Taiyong Li & Yingrui Zhou & Xinsheng Li & Jiang Wu & Ting He, 2019. "Forecasting Daily Crude Oil Prices Using Improved CEEMDAN and Ridge Regression-Based Predictors," Energies, MDPI, vol. 12(19), pages 1-25, September.
    19. Sergio Bemposta Rosende & Javier Sánchez-Soriano & Carlos Quiterio Gómez Muñoz & Javier Fernández Andrés, 2020. "Remote Management Architecture of UAV Fleets for Maintenance, Surveillance, and Security Tasks in Solar Power Plants," Energies, MDPI, vol. 13(21), pages 1-23, November.
    20. David Watling & Patrícia Baptista & Gonçalo Duarte & Jianbing Gao & Haibo Chen, 2022. "Systematic Method for Developing Reference Driving Cycles Appropriate to Electric L-Category Vehicles," Energies, MDPI, vol. 15(9), pages 1-28, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:6901-:d:661324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.