IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i4p838-d320785.html
   My bibliography  Save this article

A Computer Vision Line-Tracking Algorithm for Automatic UAV Photovoltaic Plants Monitoring Applications

Author

Listed:
  • Gabriele Roggi

    (Politecnico di Milano, Dipartimento di Scienze e Tecnologie Aerospaziali, Via La Masa 34, 20156 Milano, Italy)

  • Alessandro Niccolai

    (Politecnico di Milano, Dipartimento di Energia, Via Lambruschini 4a, 20156 Milano, Italy)

  • Francesco Grimaccia

    (Politecnico di Milano, Dipartimento di Energia, Via Lambruschini 4a, 20156 Milano, Italy)

  • Marco Lovera

    (Politecnico di Milano, Dipartimento di Scienze e Tecnologie Aerospaziali, Via La Masa 34, 20156 Milano, Italy)

Abstract

In this paper, the authors propose an UAV-based automatic inspection method for photovoltaic plants analyzing and testing a vision-based guidance method developed to this purpose. The maintenance of PV plants represents a key aspect for the profitability in energy production and autonomous inspection of such systems is a promising technology especially for large utility-scale plants where manned techniques have significant limitations in terms of time, cost and performance. In this light, an ad hoc flight control solution is investigated to exploit available UAV sensor data to enhance flight monitoring capability and correct GNSS position errors with respect to final target needs. The proposed algorithm has been tested in a simulated environment with a software-in-the loop (SITL) approach to show its effectiveness and final comparison with state of the art solutions.

Suggested Citation

  • Gabriele Roggi & Alessandro Niccolai & Francesco Grimaccia & Marco Lovera, 2020. "A Computer Vision Line-Tracking Algorithm for Automatic UAV Photovoltaic Plants Monitoring Applications," Energies, MDPI, vol. 13(4), pages 1-15, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:838-:d:320785
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/4/838/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/4/838/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alessandro Niccolai & Francesco Grimaccia & Sonia Leva, 2019. "Advanced Asset Management Tools in Photovoltaic Plant Monitoring: UAV-Based Digital Mapping," Energies, MDPI, vol. 12(24), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mariusz T. Sarniak, 2020. "Researches of the Impact of the Nominal Power Ratio and Environmental Conditions on the Efficiency of the Photovoltaic System: A Case Study for Poland in Central Europe," Sustainability, MDPI, vol. 12(15), pages 1-15, July.
    2. Gianfranco Di Lorenzo & Erika Stracqualursi & Leonardo Micheli & Salvatore Celozzi & Rodolfo Araneo, 2022. "Prognostic Methods for Photovoltaic Systems’ Underperformance and Degradation: Status, Perspectives, and Challenges," Energies, MDPI, vol. 15(17), pages 1-6, September.
    3. Sergio Bemposta Rosende & Javier Sánchez-Soriano & Carlos Quiterio Gómez Muñoz & Javier Fernández Andrés, 2020. "Remote Management Architecture of UAV Fleets for Maintenance, Surveillance, and Security Tasks in Solar Power Plants," Energies, MDPI, vol. 13(21), pages 1-23, November.
    4. Kyoik Choi & Jangwon Suh, 2023. "Fault Detection and Power Loss Assessment for Rooftop Photovoltaics Installed in a University Campus, by Use of UAV-Based Infrared Thermography," Energies, MDPI, vol. 16(11), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariusz T. Sarniak, 2020. "Researches of the Impact of the Nominal Power Ratio and Environmental Conditions on the Efficiency of the Photovoltaic System: A Case Study for Poland in Central Europe," Sustainability, MDPI, vol. 12(15), pages 1-15, July.
    2. Sergio Bemposta Rosende & Javier Sánchez-Soriano & Carlos Quiterio Gómez Muñoz & Javier Fernández Andrés, 2020. "Remote Management Architecture of UAV Fleets for Maintenance, Surveillance, and Security Tasks in Solar Power Plants," Energies, MDPI, vol. 13(21), pages 1-23, November.
    3. Desmon Simatupang & Ilman Sulaeman & Niek Moonen & Rinaldi Maulana & Safitri Baharuddin & Amalia Suryani & Jelena Popovic & Frank Leferink, 2021. "Remote Microgrids for Energy Access in Indonesia—Part II: PV Microgrids and a Technology Outlook," Energies, MDPI, vol. 14(21), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:838-:d:320785. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.