IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p6887-d661081.html
   My bibliography  Save this article

The Use of Multivariate Data Analysis (HCA and PCA) to Characterize Ashes from Biomass Combustion

Author

Listed:
  • Małgorzata Szczepanik

    (Department of Applied Mathematics and Computer Science, Faculty of Production Engineering, University of Life Sciences in Lublin, Głeboka 28, 20-612 Lublin, Poland)

  • Joanna Szyszlak-Bargłowicz

    (Department of Power Engineering and Transportation, Faculty of Production Engineering, University of Life Sciences in Lublin, Głeboka 28, 20-612 Lublin, Poland)

  • Grzegorz Zając

    (Department of Power Engineering and Transportation, Faculty of Production Engineering, University of Life Sciences in Lublin, Głeboka 28, 20-612 Lublin, Poland)

  • Adam Koniuszy

    (Department of Renewable Energy Engineering, West Pomeranian University of Technology, Papieża Pawła VI 1, 71-459 Szczecin, Poland)

  • Małgorzata Hawrot-Paw

    (Department of Renewable Energy Engineering, West Pomeranian University of Technology, Papieża Pawła VI 1, 71-459 Szczecin, Poland)

  • Artur Wolak

    (Department of Quality and Safety of Industrial Products, Institute of Quality and Product Management Sciences, Cracow University of Economics, Rakowicka 27, 31-510 Kraków, Poland)

Abstract

The content of heavy metals Cd, Cr, Cu, Fe, Ni, Pb and Zn in ash samples from miscanthus, oak, pine, sunflower husk, wheat straw, and willow ashes burned at 500, 600, 700, 800, 900, and 1000 °C, respectively, was determined. The statistical analysis of the results was based on multivariate methods: hierarchical cluster analysis (HCA), and principal component analysis (PCA), which made it possible to classify the raw materials ashed at different temperatures into the most similar groups, and to study the structure of data variability. Using PCA, three principal components were extracted, which explain more than 88% of the variability of the studied elements. Therefore, it can be concluded that the application of multivariate statistical techniques to the analysis of the results of the study of heavy metal content allowed us to draw conclusions about the influence of biomass properties on its chemical characteristics during combustion.

Suggested Citation

  • Małgorzata Szczepanik & Joanna Szyszlak-Bargłowicz & Grzegorz Zając & Adam Koniuszy & Małgorzata Hawrot-Paw & Artur Wolak, 2021. "The Use of Multivariate Data Analysis (HCA and PCA) to Characterize Ashes from Biomass Combustion," Energies, MDPI, vol. 14(21), pages 1-9, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:6887-:d:661081
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/6887/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/6887/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Algirdas Jasinskas & Ramūnas Mieldažys & Eglė Jotautienė & Rolandas Domeika & Edvardas Vaiciukevičius & Marek Marks, 2020. "Technical, Environmental, and Qualitative Assessment of the Oak Waste Processing and Its Usage for Energy Conversion," Sustainability, MDPI, vol. 12(19), pages 1-14, October.
    2. Sgarbossa, Andrea & Costa, Corrado & Menesatti, Paolo & Antonucci, Francesca & Pallottino, Federico & Zanetti, Michela & Grigolato, Stefano & Cavalli, Raffaele, 2015. "A multivariate SIMCA index as discriminant in wood pellet quality assessment," Renewable Energy, Elsevier, vol. 76(C), pages 258-263.
    3. Grzegorz Zając & Joanna Szyszlak-Bargłowicz & Wojciech Gołębiowski & Małgorzata Szczepanik, 2018. "Chemical Characteristics of Biomass Ashes," Energies, MDPI, vol. 11(11), pages 1-15, October.
    4. Yao, Xiwen & Zhao, Zhicheng & Li, Jishuo & Zhang, Bohan & Zhou, Haodong & Xu, Kaili, 2020. "Experimental investigation of physicochemical and slagging characteristics of inorganic constituents in ash residues from gasification of different herbaceous biomass," Energy, Elsevier, vol. 198(C).
    5. Tao, Guangcan & Lestander, Torbjörn A. & Geladi, Paul & Xiong, Shaojun, 2012. "Biomass properties in association with plant species and assortments I: A synthesis based on literature data of energy properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3481-3506.
    6. Voshell, Steven & Mäkelä, Mikko & Dahl, Olli, 2018. "A review of biomass ash properties towards treatment and recycling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 479-486.
    7. Munawar, Muhammad Assad & Khoja, Asif Hussain & Naqvi, Salman Raza & Mehran, Muhammad Taqi & Hassan, Muhammad & Liaquat, Rabia & Dawood, Usama Fida, 2021. "Challenges and opportunities in biomass ash management and its utilization in novel applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Magdalena Janyszek-Sołtysiak & Mieczysław Grzelak & Piotr Gajewski & Andrzej M. Jagodziński & Eliza Gaweł & Dorota Wrońska-Pilarek, 2021. "Mineral Contents in Aboveground Biomass of Sedges ( Carex L., Cyperaceae)," Energies, MDPI, vol. 14(23), pages 1-17, November.
    2. Juan Carlos Contreras-Trejo & Daniel José Vega-Nieva & Maginot Ngangyo Heya & José Angel Prieto-Ruíz & Cynthya Adriana Nava-Berúmen & Artemio Carrillo-Parra, 2022. "Sintering and Fusibility Risks of Pellet Ash from Different Sources at Different Combustion Temperatures," Energies, MDPI, vol. 15(14), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariusz Jerzy Stolarski & Paweł Dudziec & Ewelina Olba-Zięty & Paweł Stachowicz & Michał Krzyżaniak, 2022. "Forest Dendromass as Energy Feedstock: Diversity of Properties and Composition Depending on Systematic Genus and Organ," Energies, MDPI, vol. 15(4), pages 1-60, February.
    2. Munawar, Muhammad Assad & Khoja, Asif Hussain & Naqvi, Salman Raza & Mehran, Muhammad Taqi & Hassan, Muhammad & Liaquat, Rabia & Dawood, Usama Fida, 2021. "Challenges and opportunities in biomass ash management and its utilization in novel applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    3. Ondrasek, G. & Bubalo Kovačić, M. & Carević, I. & Štirmer, N. & Stipičević, S. & Udiković-Kolić, N. & Filipović, V. & Romić, D. & Rengel, Z., 2021. "Bioashes and their potential for reuse to sustain ecosystem services and underpin circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. Wojciech Rzeźnik & Ilona Rzeźnik & Paulina Mielcarek-Bocheńska & Mateusz Urbański, 2023. "Air Pollutants Emission during Co-Combustion of Animal Manure and Wood Pellets in 15 kW Boiler," Energies, MDPI, vol. 16(18), pages 1-17, September.
    5. Huang, Shengxiong & Lei, Can & Qin, Jie & Yi, Cheng & Chen, Tao & Yao, Lingling & Li, Bo & Wen, Yujiao & Zhou, Zhi & Xia, Mao, 2022. "Properties, kinetics and pyrolysis products distribution of oxidative torrefied camellia shell in different oxygen concentration," Energy, Elsevier, vol. 251(C).
    6. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2016. "Wood pellets as a sustainable energy alternative in Portugal," Renewable Energy, Elsevier, vol. 85(C), pages 1011-1016.
    7. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    8. Elżbieta Rolka & Andrzej Cezary Żołnowski & Mirosław Wyszkowski & Weronika Zych & Anna Skorwider-Namiotko, 2023. "Wood Biomass Ash (WBA) from the Heat Production Process as a Mineral Amendment for Improving Selected Soil Properties," Energies, MDPI, vol. 16(13), pages 1-17, July.
    9. Jan Fořt & Jiří Šál & Jaroslav Žák & Robert Černý, 2020. "Assessment of Wood-Based Fly Ash as Alternative Cement Replacement," Sustainability, MDPI, vol. 12(22), pages 1-16, November.
    10. Garcia, Dorival Pinheiro & Caraschi, José Cláudio & Ventorim, Gustavo & Vieira, Fábio Henrique Antunes & de Paula Protásio, Thiago, 2019. "Assessment of plant biomass for pellet production using multivariate statistics (PCA and HCA)," Renewable Energy, Elsevier, vol. 139(C), pages 796-805.
    11. Yao, Xiwen & Liu, Qinghua & Kang, Zijian & An, Zhixing & Zhou, Haodong & Xu, Kaili, 2023. "Quantitative study on thermal conversion behaviours and gas emission properties of biomass in nitrogen and in CO2/N2 mixtures by TGA/DTG and a fixed-bed tube furnace," Energy, Elsevier, vol. 270(C).
    12. Sakiewicz, Piotr & Piotrowski, Krzysztof & Kalisz, Sylwester, 2020. "Neural network prediction of parameters of biomass ashes, reused within the circular economy frame," Renewable Energy, Elsevier, vol. 162(C), pages 743-753.
    13. Zailan, Roziah & Lim, Jeng Shiun & Manan, Zainuddin Abdul & Alwi, Sharifah Rafidah Wan & Mohammadi-ivatloo, Behnam & Jamaluddin, Khairulnadzmi, 2021. "Malaysia scenario of biomass supply chain-cogeneration system and optimization modeling development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    14. Andrzej Greinert & Maria Mrówczyńska & Radosław Grech & Wojciech Szefner, 2020. "The Use of Plant Biomass Pellets for Energy Production by Combustion in Dedicated Furnaces," Energies, MDPI, vol. 13(2), pages 1-17, January.
    15. Elżbieta Jarosz-Krzemińska & Joanna Poluszyńska, 2020. "Repurposing Fly Ash Derived from Biomass Combustion in Fluidized Bed Boilers in Large Energy Power Plants as a Mineral Soil Amendment," Energies, MDPI, vol. 13(18), pages 1-21, September.
    16. Li, Fenghai & Zhao, Chaoyue & Fan, Hongli & Xu, Meiling & Guo, Qianqian & Li, Yang & Wu, Lishun & Wang, Tao & Fang, Yitian, 2022. "Ash fusion behaviors of sugarcane bagasse and its modification with sewage sludge addition," Energy, Elsevier, vol. 251(C).
    17. Zhou, Tianxing & Zhang, Weiwei & Luo, Siyi & Zuo, Zongliang & Ren, Dongdong, 2023. "The effect of ash fusion characteristic on the structure characteristics of carbon and the migration of potassium during rice straw high-temperature gasification process," Energy, Elsevier, vol. 284(C).
    18. Ziqiang Yang & Fenghai Li & Mingjie Ma & Xuefei Liu & Hongli Fan & Zhenzhu Li & Yong Wang & Yitian Fang, 2023. "Regulation Mechanism of Solid Waste on Ash Fusion Characteristics of Sorghum Straw under O 2 /CO 2 Atmosphere," Energies, MDPI, vol. 16(20), pages 1-17, October.
    19. Magdalena Dołżyńska & Sławomir Obidziński & Jolanta Piekut & Güray Yildiz, 2020. "The Utilization of Plum Stones for Pellet Production and Investigation of Post-Combustion Flue Gas Emissions," Energies, MDPI, vol. 13(19), pages 1-19, October.
    20. Liza Nuriati Lim Kim Choo & Osumanu Haruna Ahmed & Nik Muhamad Nik Majid & Zakry Fitri Abd Aziz, 2021. "Pineapple Residue Ash Reduces Carbon Dioxide and Nitrous Oxide Emissions in Pineapple Cultivation on Tropical Peat Soils at Saratok, Malaysia," Sustainability, MDPI, vol. 13(3), pages 1-23, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:6887-:d:661081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.