IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v96y2018icp479-486.html
   My bibliography  Save this article

A review of biomass ash properties towards treatment and recycling

Author

Listed:
  • Voshell, Steven
  • Mäkelä, Mikko
  • Dahl, Olli

Abstract

The generation of biomass ash (BA) is expected to increase in the future because biomass is generally recognized as carbon neutral fuel. Since BA is known, in many cases, to contain hazardous concentrations of trace elements, this will simultaneously produce more potentially hazardous ash. Soon this will need to be handled amidst stricter waste policies and a societal evolution towards a circular economy. In many cases, to allow recycling of BA, trace elements need to be removed for the protection of health and the environment. A better understanding of trace element origins in BA, and knowledge of which trace elements are most critical to advantageous recycling schemes are also needed. In this work available BA data were reviewed and processed for study by multivariate statistical analyses. This allowed for reorganization of the complex nature of BA data into simpler forms for interpretation. An established connection between peat fuels and As was thoroughly reinforced. Wood co-fired with peat would produce BA most advantageous for any recycling, while other biomass for forest recycling and wood, bark and wood waste split between forest recycling and needing treatment or disposal. Some trace elements were still an obstacle to the recycling schemes presented, therefore current state of the art ash treatments for targeting individual trace elements or for total treatment of ash were discussed. Additionally, treatment methods for ash were reviewed because their options are varied, and the goal of utilization will be achieved through matching treatment methods and recycling targets. In the future, the method of using legislative limit values and multivariate analyses to determine BA recycling routes could be replicated for other national limit values and other wastes.

Suggested Citation

  • Voshell, Steven & Mäkelä, Mikko & Dahl, Olli, 2018. "A review of biomass ash properties towards treatment and recycling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 479-486.
  • Handle: RePEc:eee:rensus:v:96:y:2018:i:c:p:479-486
    DOI: 10.1016/j.rser.2018.07.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118305343
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.07.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dou, Xiaomin & Ren, Fei & Nguyen, Minh Quan & Ahamed, Ashiq & Yin, Ke & Chan, Wei Ping & Chang, Victor Wei-Chung, 2017. "Review of MSWI bottom ash utilization from perspectives of collective characterization, treatment and existing application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 24-38.
    2. Odlare, Monica & Pell, Mikael, 2009. "Effect of wood fly ash and compost on nitrification and denitrification in agricultural soil," Applied Energy, Elsevier, vol. 86(1), pages 74-80, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kusuma, Ravi Teja & Hiremath, Rahul B. & Rajesh, Pachimatla & Kumar, Bimlesh & Renukappa, Suresh, 2022. "Sustainable transition towards biomass-based cement industry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    2. Sakiewicz, Piotr & Piotrowski, Krzysztof & Kalisz, Sylwester, 2020. "Neural network prediction of parameters of biomass ashes, reused within the circular economy frame," Renewable Energy, Elsevier, vol. 162(C), pages 743-753.
    3. Małgorzata Szczepanik & Joanna Szyszlak-Bargłowicz & Grzegorz Zając & Adam Koniuszy & Małgorzata Hawrot-Paw & Artur Wolak, 2021. "The Use of Multivariate Data Analysis (HCA and PCA) to Characterize Ashes from Biomass Combustion," Energies, MDPI, vol. 14(21), pages 1-9, October.
    4. Munawar, Muhammad Assad & Khoja, Asif Hussain & Naqvi, Salman Raza & Mehran, Muhammad Taqi & Hassan, Muhammad & Liaquat, Rabia & Dawood, Usama Fida, 2021. "Challenges and opportunities in biomass ash management and its utilization in novel applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    5. Ondrasek, G. & Bubalo Kovačić, M. & Carević, I. & Štirmer, N. & Stipičević, S. & Udiković-Kolić, N. & Filipović, V. & Romić, D. & Rengel, Z., 2021. "Bioashes and their potential for reuse to sustain ecosystem services and underpin circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    6. Jan Fořt & Jiří Šál & Jaroslav Žák & Robert Černý, 2020. "Assessment of Wood-Based Fly Ash as Alternative Cement Replacement," Sustainability, MDPI, vol. 12(22), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hang Zhao & Yang Tian & Rong Wang & Rui Wang & Xiangfei Zeng & Feihua Yang & Zhaojia Wang & Mengjun Chen & Jiancheng Shu, 2021. "Seasonal Variation of the Mobility and Toxicity of Metals in Beijing’s Municipal Solid Waste Incineration Fly Ash," Sustainability, MDPI, vol. 13(12), pages 1-13, June.
    2. Tharaka Gunaratne & Joakim Krook & Hans Andersson, 2020. "Current Practice of Managing the Waste of the Waste: Policy, Market, and Organisational Factors Influencing Shredder Fines Management in Sweden," Sustainability, MDPI, vol. 12(22), pages 1-18, November.
    3. Marco Abis & Martina Bruno & Kerstin Kuchta & Franz-Georg Simon & Raul Grönholm & Michel Hoppe & Silvia Fiore, 2020. "Assessment of the Synergy between Recycling and Thermal Treatments in Municipal Solid Waste Management in Europe," Energies, MDPI, vol. 13(23), pages 1-15, December.
    4. Tong, Huanhuan & Yao, Zhiyi & Lim, Jun Wei & Mao, Liwei & Zhang, Jingxing & Ge, Tian Shu & Peng, Ying Hong & Wang, Chi-Hwa & Tong, Yen Wah, 2018. "Harvest green energy through energy recovery from waste: A technology review and an assessment of Singapore," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 163-178.
    5. Ahmad Assi & Fabjola Bilo & Alessandra Zanoletti & Jessica Ponti & Andrea Valsesia & Rita La Spina & Laura E. Depero & Elza Bontempi, 2020. "Review of the Reuse Possibilities Concerning Ash Residues from Thermal Process in a Medium-Sized Urban System in Northern Italy," Sustainability, MDPI, vol. 12(10), pages 1-21, May.
    6. Einara Blanco Machin & Daniel Travieso Pedroso & Daviel Gómez Acosta & Maria Isabel Silva dos Santos & Felipe Solferini de Carvalho & Adrian Blanco Machín & Matías Abner Neira Ortíz & Reinaldo Sánchez, 2022. "Techno-Economic and Environmental Assessment of Municipal Solid Waste Energetic Valorization," Energies, MDPI, vol. 15(23), pages 1-17, November.
    7. Ling Xu & Yinfei Du & Giuseppe Loprencipe & Laura Moretti, 2023. "Rheological and Fatigue Characteristics of Asphalt Mastics and Mixtures Containing Municipal Solid Waste Incineration (MSWI) Residues," Sustainability, MDPI, vol. 15(10), pages 1-18, May.
    8. Vamvuka, Despina & Kaniadakis, George & Pentari, Despina & Alevizos, George & Papapolikarpou, Zoe, 2017. "Comparison of ashes from fixed/fluidized bed combustion of swine sludge and olive by-products. Properties, environmental impact and potential uses," Renewable Energy, Elsevier, vol. 112(C), pages 74-83.
    9. Hyunsoo Kim & Oyunbileg Purev & Kanghee Cho & Nagchoul Choi & Jaewon Lee & Seongjin Yoon, 2022. "Removal of Inorganic Salts in Municipal Solid Waste Incineration Fly Ash Using a Washing Ejector and Its Application for CO 2 Capture," IJERPH, MDPI, vol. 19(4), pages 1-15, February.
    10. Valeriy Voropaev & Nataliya Alfimova & Ivan Nikulin & Tatyana Nikulicheva & Aleksej Titenko & Vitaly Nikulichev, 2021. "Influence of Gypsum-Containing Waste on Ammonia Binding in Animal Waste Composting," Agriculture, MDPI, vol. 11(11), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:96:y:2018:i:c:p:479-486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.