IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6793-d658833.html
   My bibliography  Save this article

A GIS-MCDA Approach Addressing Economic-Social-Environmental Concerns for Selecting the Most Suitable Compressed Air Energy Storage Reservoirs

Author

Listed:
  • Catarina R. Matos

    (Energy for Sustainability Initiative, MIT Portugal Program, Faculty of Sciences and Technology, University of Coimbra, Rua Luís Reis dos Santos, Pólo II, 3030-788 Coimbra, Portugal
    Institute of Earth Sciences (ICT), University of Évora, Colégio Luís António Verney, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal)

  • Júlio F. Carneiro

    (Institute of Earth Sciences (ICT), University of Évora, Colégio Luís António Verney, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
    Department of Geosciences, Institute for Research and Advanced Training, School of Science and Technology, University of Évora, Colégio Luís António Verney, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal)

  • Patrícia Pereira da Silva

    (CeBER, Centre for Business and Economics Research, Faculty of Economics, University of Coimbra, Av. Dias da Silva, 165, 3004-512 Coimbra, Portugal
    INESC Coimbra, Institute for Systems Engineering and Computers at Coimbra, Rua Sílvio Lima, Pólo II, 3030-290 Coimbra, Portugal)

  • Carla O. Henriques

    (CeBER, Centre for Business and Economics Research, Faculty of Economics, University of Coimbra, Av. Dias da Silva, 165, 3004-512 Coimbra, Portugal
    INESC Coimbra, Institute for Systems Engineering and Computers at Coimbra, Rua Sílvio Lima, Pólo II, 3030-290 Coimbra, Portugal
    Polytechnic of Coimbra, Coimbra Business School Research Centre|ISCAC, Quinta Agrícola-Bencanta, 3040-316 Coimbra, Portugal)

Abstract

This article presents an assessment of the most suitable compressed air energy storage (CAES) reservoirs and facilities to better integrate renewable energy into the electricity grid. The novelty of this study resides in selecting the best CAES reservoir sites through the application of a multi-criteria decision aid (MCDA) tool, specifically the simple additive weighting (SAW) method. Besides using geographic information systems (GIS) spatial representation of potential reservoir areas, for the MCDA method, several spatial criteria, environmental and social constraints, and positive incentives (e.g., the proximity to existing power generation facilities of renewable energy sources) were contemplated. As a result, sixty-two alternatives or potential reservoir sites were identified, and thirteen criteria (seven constraints and six incentives) were considered. The final stage of this study consisted of conducting a sensitivity analysis to determine the robustness of the solutions obtained and giving insights regarding each criterion’s influence on the reservoir sites selected. The three best suitable reservoir sites obtained were the Monte Real salt dome, Sines Massif, and the Campina de Cima—Loulé salt mine. The results show that this GIS-MCDA methodological framework, integrating spatial and non-spatial information, proved to provide a multidimensional view of the potential reservoir CAES systems incorporating both constraints and incentives.

Suggested Citation

  • Catarina R. Matos & Júlio F. Carneiro & Patrícia Pereira da Silva & Carla O. Henriques, 2021. "A GIS-MCDA Approach Addressing Economic-Social-Environmental Concerns for Selecting the Most Suitable Compressed Air Energy Storage Reservoirs," Energies, MDPI, vol. 14(20), pages 1-22, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6793-:d:658833
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6793/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6793/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rediske, Graciele & Siluk, Julio Cezar M. & Michels, Leandro & Rigo, Paula D. & Rosa, Carmen B. & Cugler, Gilberto, 2020. "Multi-criteria decision-making model for assessment of large photovoltaic farms in Brazil," Energy, Elsevier, vol. 197(C).
    2. Foley, A. & Díaz Lobera, I., 2013. "Impacts of compressed air energy storage plant on an electricity market with a large renewable energy portfolio," Energy, Elsevier, vol. 57(C), pages 85-94.
    3. Baumann, Manuel & Weil, Marcel & Peters, Jens F. & Chibeles-Martins, Nelson & Moniz, Antonio B., 2019. "A review of multi-criteria decision making approaches for evaluating energy storage systems for grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 516-534.
    4. Edmundas Kazimieras Zavadskas & Zenonas Turskis & Titas Dejus & Milda Viteikiene, 2007. "Sensitivity analysis of a simple additive weight method," International Journal of Management and Decision Making, Inderscience Enterprises Ltd, vol. 8(5/6), pages 555-574.
    5. Shao, Meng & Han, Zhixin & Sun, Jinwei & Xiao, Chengsi & Zhang, Shulei & Zhao, Yuanxu, 2020. "A review of multi-criteria decision making applications for renewable energy site selection," Renewable Energy, Elsevier, vol. 157(C), pages 377-403.
    6. Budt, Marcus & Wolf, Daniel & Span, Roland & Yan, Jinyue, 2016. "A review on compressed air energy storage: Basic principles, past milestones and recent developments," Applied Energy, Elsevier, vol. 170(C), pages 250-268.
    7. Jidai Wang & Kunpeng Lu & Lan Ma & Jihong Wang & Mark Dooner & Shihong Miao & Jian Li & Dan Wang, 2017. "Overview of Compressed Air Energy Storage and Technology Development," Energies, MDPI, vol. 10(7), pages 1-22, July.
    8. Carneiro, Júlio F. & Matos, Catarina R. & van Gessel, Serge, 2019. "Opportunities for large-scale energy storage in geological formations in mainland Portugal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 201-211.
    9. Sánchez-Lozano, Juan M. & Henggeler Antunes, Carlos & García-Cascales, M. Socorro & Dias, Luis C., 2014. "GIS-based photovoltaic solar farms site selection using ELECTRE-TRI: Evaluating the case for Torre Pacheco, Murcia, Southeast of Spain," Renewable Energy, Elsevier, vol. 66(C), pages 478-494.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kamali Saraji, Mahyar & Aliasgari, Elahe & Streimikiene, Dalia, 2023. "Assessment of the challenges to renewable energy technologies adoption in rural areas: A Fermatean CRITIC-VIKOR approach," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    2. Matos, Catarina R. & Pereira da Silva, Patrícia & Carneiro, Júlio F., 2023. "Economic assessment for compressed air energy storage business model alternatives," Applied Energy, Elsevier, vol. 329(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. King, Marcus & Jain, Anjali & Bhakar, Rohit & Mathur, Jyotirmay & Wang, Jihong, 2021. "Overview of current compressed air energy storage projects and analysis of the potential underground storage capacity in India and the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    2. Sarmast, Sepideh & Rouindej, Kamyar & Fraser, Roydon A. & Dusseault, Maurice B., 2024. "Optimizing near-adiabatic compressed air energy storage (NA-CAES) systems: Sizing and design considerations," Applied Energy, Elsevier, vol. 357(C).
    3. Shao, Meng & Zhao, Yuanxu & Sun, Jinwei & Han, Zhixin & Shao, Zhuxiao, 2023. "A decision framework for tidal current power plant site selection based on GIS-MCDM: A case study in China," Energy, Elsevier, vol. 262(PB).
    4. Guo, Chaobin & Li, Cai & Zhang, Keni & Cai, Zuansi & Ma, Tianran & Maggi, Federico & Gan, Yixiang & El-Zein, Abbas & Pan, Zhejun & Shen, Luming, 2021. "The promise and challenges of utility-scale compressed air energy storage in aquifers," Applied Energy, Elsevier, vol. 286(C).
    5. Dzido, Aleksandra & Krawczyk, Piotr & Wołowicz, Marcin & Badyda, Krzysztof, 2022. "Comparison of advanced air liquefaction systems in Liquid Air Energy Storage applications," Renewable Energy, Elsevier, vol. 184(C), pages 727-739.
    6. Meng, Hui & Wang, Meihong & Olumayegun, Olumide & Luo, Xiaobo & Liu, Xiaoyan, 2019. "Process design, operation and economic evaluation of compressed air energy storage (CAES) for wind power through modelling and simulation," Renewable Energy, Elsevier, vol. 136(C), pages 923-936.
    7. Moez Krichen & Yasir Basheer & Saeed Mian Qaisar & Asad Waqar, 2023. "A Survey on Energy Storage: Techniques and Challenges," Energies, MDPI, vol. 16(5), pages 1-29, February.
    8. Romero-Ramos, J.A. & Gil, J.D. & Cardemil, J.M. & Escobar, R.A. & Arias, I. & Pérez-García, M., 2023. "A GIS-AHP approach for determining the potential of solar energy to meet the thermal demand in southeastern Spain productive enclaves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    9. Luo, Xing & Dooner, Mark & He, Wei & Wang, Jihong & Li, Yaowang & Li, Decai & Kiselychnyk, Oleh, 2018. "Feasibility study of a simulation software tool development for dynamic modelling and transient control of adiabatic compressed air energy storage with its electrical power system applications," Applied Energy, Elsevier, vol. 228(C), pages 1198-1219.
    10. Cárdenas, Bruno & Ibanez, Roderaid & Rouse, James & Swinfen-Styles, Lawrie & Garvey, Seamus, 2023. "The effect of a nuclear baseload in a zero-carbon electricity system: An analysis for the UK," Renewable Energy, Elsevier, vol. 205(C), pages 256-272.
    11. Li, Yi & Liu, Yaning & Li, Yi & Hu, Bin & Gai, Peng, 2023. "Potential influences of leakage through a high permeability path on shallow aquifers in compressed air energy storage in aquifers," Renewable Energy, Elsevier, vol. 209(C), pages 661-676.
    12. Matos, Catarina R. & Pereira da Silva, Patrícia & Carneiro, Júlio F., 2023. "Economic assessment for compressed air energy storage business model alternatives," Applied Energy, Elsevier, vol. 329(C).
    13. Dib, Ghady & Haberschill, Philippe & Rullière, Romuald & Perroit, Quentin & Davies, Simon & Revellin, Rémi, 2020. "Thermodynamic simulation of a micro advanced adiabatic compressed air energy storage for building application," Applied Energy, Elsevier, vol. 260(C).
    14. Pereira, André Alves & Pereira, Miguel Alves, 2023. "Energy storage strategy analysis based on the Choquet multi-criteria preference aggregation model: The Portuguese case," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    15. Dewevre, Florent & Lacroix, Clément & Loubar, Khaled & Poncet, Sébastien, 2024. "Carbon dioxide energy storage systems: Current researches and perspectives," Renewable Energy, Elsevier, vol. 224(C).
    16. Shan, Rui & Reagan, Jeremiah & Castellanos, Sergio & Kurtz, Sarah & Kittner, Noah, 2022. "Evaluating emerging long-duration energy storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    17. Zhan, Junpeng & Ansari, Osama Aslam & Liu, Weijia & Chung, C.Y., 2019. "An accurate bilinear cavern model for compressed air energy storage," Applied Energy, Elsevier, vol. 242(C), pages 752-768.
    18. Haddad, Brahim & Díaz-Cuevas, Pilar & Ferreira, Paula & Djebli, Ahmed & Pérez, Juan Pedro, 2021. "Mapping concentrated solar power site suitability in Algeria," Renewable Energy, Elsevier, vol. 168(C), pages 838-853.
    19. Wróbel, Marlena & Kalina, Jacek, 2019. "Preliminary evaluation of CAES system concept with partial oxidation gas turbine technology," Energy, Elsevier, vol. 183(C), pages 766-775.
    20. Kangyu Deng & Kai Zhang & Xinran Xue & Hui Zhou, 2019. "Design of a New Compressed Air Energy Storage System with Constant Gas Pressure and Temperature for Application in Coal Mine Roadways," Energies, MDPI, vol. 12(21), pages 1-14, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6793-:d:658833. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.