IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6456-d652450.html
   My bibliography  Save this article

Assessing the Sustainable Development of Micro-Hydro Power Plants in an Isolated Traditional Village West Java, Indonesia

Author

Listed:
  • Muhamad Alhaqurahman Isa

    (Department of Environmental Engineering, Bandung Institute of Technology, Bandung 40132, Indonesia)

  • Priana Sudjono

    (Department of Environmental Engineering, Bandung Institute of Technology, Bandung 40132, Indonesia)

  • Tatsuro Sato

    (Faculty of Architecture and Civil Engineering, Kyushu Sangyo University 2-3-1 Matsukadai, Higashi-ku, Fukuoka 813-8503, Japan)

  • Nariaki Onda

    (Tohoku Research Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, 92-25 Shimokuriyagawa, Morioka 020-0123, Japan)

  • Izuki Endo

    (School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji 670-0092, Japan)

  • Asari Takada

    (Division of Hydrolic and Hydrologic Engineering, Institute for Rural Engineering, National Agriculture and Food Research Organization, 2-1-6 Kannondai, Tsukuba 305-8517, Japan)

  • Barti Setiani Muntalif

    (Department of Environmental Engineering, Bandung Institute of Technology, Bandung 40132, Indonesia)

  • Jun’ichiro Ide

    (Department of Applied Chemistry and Bioscience, Chitose Institute of Science and Technology, 758-65 Bibi, Chitose 066-8655, Japan)

Abstract

The sustainable development of micro-hydropower (MHP) plants is a challenge for rural electrification in developing countries, especially in Indonesia, which has diverse ethnic groups, cultures, and traditions in several isolated locations due to its complex terrain. The uniqueness of a social situation in a location can affect the sustainable electrification development. This study aimed to assess the sustainable development of MHP plants in the Kasepuhan Ciptagelar, which has unique traditions and cultural characteristics. The assessment was conducted using the sustainable development indicator (SDI) method, the Ilskog method, which can include social, economic, environmental, technical, and institutional dimensions. Data were collected through field investigations and qualitative dialogs to understand the culture and ways of thinking. The results of the Ilskog method analysis revealed that the environmental dimensions had the highest scores, whereas economic dimensions had the lowest scores, indicating that the cultural background of the Kasepuhan Ciptagelar impacted the SDI scores. This was attributable to the decision of Kasepuhan’s traditional leader, which strengthened the community commitment to renewable energy use. However, the cultural background adversely impacted monetary income to sustain MHP plants. This study proposed that community innovation and microcredit availability could improve productive activities, resulting in better economic conditions to sustain MHP plants.

Suggested Citation

  • Muhamad Alhaqurahman Isa & Priana Sudjono & Tatsuro Sato & Nariaki Onda & Izuki Endo & Asari Takada & Barti Setiani Muntalif & Jun’ichiro Ide, 2021. "Assessing the Sustainable Development of Micro-Hydro Power Plants in an Isolated Traditional Village West Java, Indonesia," Energies, MDPI, vol. 14(20), pages 1-13, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6456-:d:652450
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6456/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6456/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Purwanto, Widodo Wahyu & Afifah, Nok, 2016. "Assessing the impact of techno socioeconomic factors on sustainability indicators of microhydro power projects in Indonesia: A comparative study," Renewable Energy, Elsevier, vol. 93(C), pages 312-322.
    2. Ilskog, Elisabeth & Kjellström, Björn, 2008. "And then they lived sustainably ever after?--Assessment of rural electrification cases by means of indicators," Energy Policy, Elsevier, vol. 36(7), pages 2674-2684, July.
    3. Laghari, J.A. & Mokhlis, H. & Bakar, A.H.A. & Mohammad, Hasmaini, 2013. "A comprehensive overview of new designs in the hydraulic, electrical equipments and controllers of mini hydro power plants making it cost effective technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 279-293.
    4. Vaccari, Mentore & Vitali, Francesco & Mazzù, Angelo, 2012. "Improved cookstove as an appropriate technology for the Logone Valley (Chad – Cameroon): Analysis of fuel and cost savings," Renewable Energy, Elsevier, vol. 47(C), pages 45-54.
    5. Ilskog, Elisabeth, 2008. "Indicators for assessment of rural electrification--An approach for the comparison of apples and pears," Energy Policy, Elsevier, vol. 36(7), pages 2665-2673, July.
    6. Egre, Dominique & Milewski, Joseph C., 2002. "The diversity of hydropower projects," Energy Policy, Elsevier, vol. 30(14), pages 1225-1230, November.
    7. Rahman, Md. Mizanur & Paatero, Jukka V. & Poudyal, Aditya & Lahdelma, Risto, 2013. "Driving and hindering factors for rural electrification in developing countries: Lessons from Bangladesh," Energy Policy, Elsevier, vol. 61(C), pages 840-851.
    8. World Bank, 2013. "Indonesia : Toward Universal Access to Clean Cooking," World Bank Publications - Reports 16068, The World Bank Group.
    9. Mujiyanto, Sugeng & Tiess, Günter, 2013. "Secure energy supply in 2025: Indonesia's need for an energy policy strategy," Energy Policy, Elsevier, vol. 61(C), pages 31-41.
    10. Paish, Oliver, 2002. "Small hydro power: technology and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(6), pages 537-556, December.
    11. Date, Abhijit & Akbarzadeh, Aliakbar, 2009. "Design and cost analysis of low head simple reaction hydro turbine for remote area power supply," Renewable Energy, Elsevier, vol. 34(2), pages 409-415.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olivier Cleynen & Dennis Powalla & Stefan Hoerner & Dominique Thévenin, 2022. "An Efficient Method for Computing the Power Potential of Bypass Hydropower Installations," Energies, MDPI, vol. 15(9), pages 1-13, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Purwanto, Widodo Wahyu & Afifah, Nok, 2016. "Assessing the impact of techno socioeconomic factors on sustainability indicators of microhydro power projects in Indonesia: A comparative study," Renewable Energy, Elsevier, vol. 93(C), pages 312-322.
    2. Ribó-Pérez, David & Bastida-Molina, Paula & Gómez-Navarro, Tomás & Hurtado-Pérez, Elías, 2020. "Hybrid assessment for a hybrid microgrid: A novel methodology to critically analyse generation technologies for hybrid microgrids," Renewable Energy, Elsevier, vol. 157(C), pages 874-887.
    3. Lahimer, A.A. & Alghoul, M.A. & Yousif, Fadhil & Razykov, T.M. & Amin, N. & Sopian, K., 2013. "Research and development aspects on decentralized electrification options for rural household," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 314-324.
    4. Kadier, Abudukeremu & Kalil, Mohd Sahaid & Pudukudy, Manoj & Hasan, Hassimi Abu & Mohamed, Azah & Hamid, Aidil Abdul, 2018. "Pico hydropower (PHP) development in Malaysia: Potential, present status, barriers and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2796-2805.
    5. Marula Tsagkari & Jordi Roca & Phedeas Stephanides, 2022. "Sustainability of local renewable energy projects: A comprehensive framework and an empirical analysis on two islands," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(5), pages 1155-1168, October.
    6. Elbatran, A.H. & Yaakob, O.B. & Ahmed, Yasser M. & Shabara, H.M., 2015. "Operation, performance and economic analysis of low head micro-hydropower turbines for rural and remote areas: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 40-50.
    7. Palit, Debajit & Bandyopadhyay, Kaushik Ranjan, 2016. "Rural electricity access in South Asia: Is grid extension the remedy? A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1505-1515.
    8. Tang, Shengwen & Chen, Jingtao & Sun, Peigui & Li, Yang & Yu, Peng & Chen, E., 2019. "Current and future hydropower development in Southeast Asia countries (Malaysia, Indonesia, Thailand and Myanmar)," Energy Policy, Elsevier, vol. 129(C), pages 239-249.
    9. López-González, A. & Domenech, B. & Ferrer-Martí, L., 2018. "Formative evaluation of sustainability in rural electrification programs from a management perspective: A case study from Venezuela," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 95-109.
    10. Aparna Katre & Arianna Tozzi, 2018. "Assessing the Sustainability of Decentralized Renewable Energy Systems: A Comprehensive Framework with Analytical Methods," Sustainability, MDPI, vol. 10(4), pages 1-18, April.
    11. López-González, A. & Domenech, B. & Ferrer-Martí, L., 2018. "Sustainability and design assessment of rural hybrid microgrids in Venezuela," Energy, Elsevier, vol. 159(C), pages 229-242.
    12. Kathleen Mallard & Vincent Debusschere & Lauric Garbuio, 2020. "Multi-Criteria Method for Sustainable Design of Energy Conversion Systems," Sustainability, MDPI, vol. 12(16), pages 1-18, August.
    13. Boliko, Charles M. & Ialnazov, Dimiter S., 2019. "An assessment of rural electrification projects in Kenya using a sustainability framework," Energy Policy, Elsevier, vol. 133(C).
    14. Terrapon-Pfaff, Julia & Dienst, Carmen & König, Julian & Ortiz, Willington, 2014. "A cross-sectional review: Impacts and sustainability of small-scale renewable energy projects in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1-10.
    15. Barelli, L. & Liucci, L. & Ottaviano, A. & Valigi, D., 2013. "Mini-hydro: A design approach in case of torrential rivers," Energy, Elsevier, vol. 58(C), pages 695-706.
    16. Qian, Zhongdong & Wang, Fan & Guo, Zhiwei & Lu, Jie, 2016. "Performance evaluation of an axial-flow pump with adjustable guide vanes in turbine mode," Renewable Energy, Elsevier, vol. 99(C), pages 1146-1152.
    17. Balkhair, Khaled S. & Rahman, Khalil Ur, 2017. "Sustainable and economical small-scale and low-head hydropower generation: A promising alternative potential solution for energy generation at local and regional scale," Applied Energy, Elsevier, vol. 188(C), pages 378-391.
    18. Aslan, Yilmaz & Arslan, Oguz & Yasar, Celal, 2008. "A sensitivity analysis for the design of small-scale hydropower plant: Kayabogazi case study," Renewable Energy, Elsevier, vol. 33(4), pages 791-801.
    19. Geoffrey Gasore & Helene Ahlborg & Etienne Ntagwirumugara & Daniel Zimmerle, 2021. "Progress for On-Grid Renewable Energy Systems: Identification of Sustainability Factors for Small-Scale Hydropower in Rwanda," Energies, MDPI, vol. 14(4), pages 1-16, February.
    20. Quaranta, Emanuele & Revelli, Roberto, 2018. "Gravity water wheels as a micro hydropower energy source: A review based on historic data, design methods, efficiencies and modern optimizations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 414-427.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6456-:d:652450. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.