IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i1p232-d474651.html
   My bibliography  Save this article

Biometric Data as Real-Time Measure of Physiological Reactions to Environmental Stimuli in the Built Environment

Author

Listed:
  • Sandra G. L. Persiani

    (Chair of Building Technology and Climate Responsive Design, Department of Architecture, Technical University of Munich, 80333 München, Germany)

  • Bilge Kobas

    (Chair of Building Technology and Climate Responsive Design, Department of Architecture, Technical University of Munich, 80333 München, Germany)

  • Sebastian Clark Koth

    (Chair of Building Technology and Climate Responsive Design, Department of Architecture, Technical University of Munich, 80333 München, Germany)

  • Thomas Auer

    (Chair of Building Technology and Climate Responsive Design, Department of Architecture, Technical University of Munich, 80333 München, Germany)

Abstract

The physiological and cognitive effects of environmental stimuli from the built environment on humans have been studied for more than a century, over short time frames in terms of comfort, and over long-time frames in terms of health and wellbeing. The strong interdependence of objective and subjective factors in these fields of study has traditionally involved the necessity to rely on a number of qualitative sources of information, as self-report variables, which however, raise criticisms concerning their reliability and precision. Recent advancements in sensing technology and data processing methodologies have strongly contributed towards a renewed interest in biometric data as a potential high-precision tool to study the physiological effects of selected stimuli on humans using more objective and real-time measures. Within this context, this review reports on a broader spectrum of available and advanced biosensing techniques used in the fields of building engineering, human physiology, neurology, and psychology. The interaction and interdependence between (i) indoor environmental parameters and (ii) biosignals identifying human physiological response to the environmental stressors are systematically explored. Online databases ScienceDirect, Scopus, MDPI and ResearchGate were scanned to gather all relevant publications in the last 20 years, identifying and listing tools and methods of biometric data collection, assessing the potentials and drawbacks of the most relevant techniques. The review aims to support the introduction of biomedical signals as a tool for understanding the physiological aspects of indoor comfort in the view of achieving an improved balance between human resilience and building resilience, addressing human indoor health as well as energetic and environmental building performance.

Suggested Citation

  • Sandra G. L. Persiani & Bilge Kobas & Sebastian Clark Koth & Thomas Auer, 2021. "Biometric Data as Real-Time Measure of Physiological Reactions to Environmental Stimuli in the Built Environment," Energies, MDPI, vol. 14(1), pages 1-40, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:1:p:232-:d:474651
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/1/232/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/1/232/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ma, Nan & Aviv, Dorit & Guo, Hongshan & Braham, William W., 2021. "Measuring the right factors: A review of variables and models for thermal comfort and indoor air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Chang, Tom Y. & Kajackaite, Agne, 2019. "Battle for the thermostat: Gender and the effect of temperature on cognitive performance," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 14(5), pages 1-10.
    3. Donghyun Rim & Stefano Schiavon & William W Nazaroff, 2015. "Energy and Cost Associated with Ventilating Office Buildings in a Tropical Climate," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-14, March.
    4. Djongyang, Noël & Tchinda, René & Njomo, Donatien, 2010. "Thermal comfort: A review paper," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2626-2640, December.
    5. Dounia Mulders & Cyril de Bodt & Nicolas Lejeune & Arthur Courtin & Giulia Liberati & Michel Verleysen & André Mouraux, 2020. "Dynamics of the perception and EEG signals triggered by tonic warm and cool stimulation," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-25, April.
    6. Paulína Šujanová & Monika Rychtáriková & Tiago Sotto Mayor & Affan Hyder, 2019. "A Healthy, Energy-Efficient and Comfortable Indoor Environment, a Review," Energies, MDPI, vol. 12(8), pages 1-37, April.
    7. Michel Grabisch & Jacques Duchene & Frédéric Lino & Patrice Perny, 2002. "Subjective Evaluation of Discomfort in Sitting Positions," Post-Print halshs-00273179, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuefei Wang & Zhiqi Chen & Dawei Ma & Tingting Zhou & Jintang Chen & Xing Jiang, 2023. "Relationship between Visual and Thermal Comfort and Electrodermal Activity in Campus Blue–Green Spaces: A Case Study of Guangzhou, China," Sustainability, MDPI, vol. 15(15), pages 1-20, July.
    2. Alessandra Battisti & Livia Calcagni & Alberto Calenzo & Aurora Angelozzi & Miriam Errigo & Maurizio Marceca & Silvia Iorio, 2021. "Urban Health: Assessment of Indoor Environment Spillovers on Health in a Distressed Urban Area of Rome," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    3. Benedetto Nastasi & Francesco Mancini, 2021. "Procedures and Methodologies for the Control and Improvement of Energy-Environmental Quality in Construction," Energies, MDPI, vol. 14(9), pages 1-2, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amir Faraji & Maria Rashidi & Fatemeh Rezaei & Payam Rahnamayiezekavat, 2023. "A Meta-Synthesis Review of Occupant Comfort Assessment in Buildings (2002–2022)," Sustainability, MDPI, vol. 15(5), pages 1-36, February.
    2. Omar al-Ani & Sanjoy Das & Hongyu Wu, 2023. "Imitation Learning with Deep Attentive Tabular Neural Networks for Environmental Prediction and Control in Smart Home," Energies, MDPI, vol. 16(13), pages 1-19, June.
    3. Alessandro Franco & Lorenzo Miserocchi & Daniele Testi, 2021. "HVAC Energy Saving Strategies for Public Buildings Based on Heat Pumps and Demand Controlled Ventilation," Energies, MDPI, vol. 14(17), pages 1-20, September.
    4. Alessandro Franco & Carlo Bartoli & Paolo Conti & Lorenzo Miserocchi & Daniele Testi, 2021. "Multi-Objective Optimization of HVAC Operation for Balancing Energy Use and Occupant Comfort in Educational Buildings," Energies, MDPI, vol. 14(10), pages 1-19, May.
    5. Michel Grabisch & Christophe Labreuche, 2015. "On the decomposition of Generalized Additive Independence models," Documents de travail du Centre d'Economie de la Sorbonne 15064, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    6. Laura J. Elstub & Shimra J. Fine & Karl E. Zelik, 2021. "Exoskeletons and Exosuits Could Benefit from Mode-Switching Body Interfaces That Loosen/Tighten to Improve Thermal Comfort," IJERPH, MDPI, vol. 18(24), pages 1-12, December.
    7. Ribeiro, Thatiana Jessica da Silva & Mady, Carlos Eduardo Keutenedjian, 2022. "Comparison among exergy analysis methods applied to a human body thermal model," Energy, Elsevier, vol. 239(PE).
    8. Bruno Malet-Damour & Jean-Pierre Habas & Dimitri Bigot, 2023. "Is Loose-Fill Plastic Waste an Opportunity for Thermal Insulation in Cold and Humid Tropical Climates?," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    9. Chateauneuf, A. & Grabisch, M. & Rico, A., 2008. "Modeling attitudes toward uncertainty through the use of the Sugeno integral," Journal of Mathematical Economics, Elsevier, vol. 44(11), pages 1084-1099, December.
    10. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    11. Djamila, Harimi, 2017. "Indoor thermal comfort predictions: Selected issues and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 569-580.
    12. Francesco Asdrubali & Cinzia Buratti & Franco Cotana & Giorgio Baldinelli & Michele Goretti & Elisa Moretti & Catia Baldassarri & Elisa Belloni & Francesco Bianchi & Antonella Rotili & Marco Vergoni &, 2013. "Evaluation of Green Buildings’ Overall Performance through in Situ Monitoring and Simulations," Energies, MDPI, vol. 6(12), pages 1-23, December.
    13. Pedro Faria & Zita Vale, 2019. "Distributed Energy Resources Management 2018," Energies, MDPI, vol. 13(1), pages 1-4, December.
    14. Juan Botero-Valencia & Adrian Martinez-Perez & Ruber Hernández-García & Luis Castano-Londono, 2023. "Exploring Spatial Patterns in Sensor Data for Humidity, Temperature, and RSSI Measurements," Data, MDPI, vol. 8(5), pages 1-13, April.
    15. Brice Mayag & Michel Grabisch & Christophe Labreuche, 2009. "A characterization of the 2-additive Choquet integral through cardinal information," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00445132, HAL.
    16. Khouya, Ahmed, 2021. "Modelling and analysis of a hybrid solar dryer for woody biomass," Energy, Elsevier, vol. 216(C).
    17. Maria Psillaki & Nikolaos Apostolopoulos & Ilias Makris & Panagiotis Liargovas & Sotiris Apostolopoulos & Panos Dimitrakopoulos & George Sklias, 2023. "Hospitals’ Energy Efficiency in the Perspective of Saving Resources and Providing Quality Services through Technological Options: A Systematic Literature Review," Energies, MDPI, vol. 16(2), pages 1-21, January.
    18. Feng, Yanxiao & Liu, Shichao & Wang, Julian & Yang, Jing & Jao, Ying-Ling & Wang, Nan, 2022. "Data-driven personal thermal comfort prediction: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    19. Michael Short & Sergio Rodriguez & Richard Charlesworth & Tracey Crosbie & Nashwan Dawood, 2019. "Optimal Dispatch of Aggregated HVAC Units for Demand Response: An Industry 4.0 Approach," Energies, MDPI, vol. 12(22), pages 1-20, November.
    20. Van Craenendonck, Stijn & Lauriks, Leen & Vuye, Cedric & Kampen, Jarl, 2018. "A review of human thermal comfort experiments in controlled and semi-controlled environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3365-3378.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:1:p:232-:d:474651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.