IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v14y2010i9p2626-2640.html
   My bibliography  Save this article

Thermal comfort: A review paper

Author

Listed:
  • Djongyang, Noël
  • Tchinda, René
  • Njomo, Donatien

Abstract

This paper presents a literature review of thermal comfort. Both rational and adaptive thermal comfort approaches are presented. An overview of the human body thermoregulatory system as well as the mathematical modelling of heat exchanged between human body and its environment in the situations of both awaked and sleeping people is presented.

Suggested Citation

  • Djongyang, Noël & Tchinda, René & Njomo, Donatien, 2010. "Thermal comfort: A review paper," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2626-2640, December.
  • Handle: RePEc:eee:rensus:v:14:y:2010:i:9:p:2626-2640
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(10)00220-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ogbonna, A.C. & Harris, D.J., 2008. "Thermal comfort in sub-Saharan Africa: Field study report in Jos-Nigeria," Applied Energy, Elsevier, vol. 85(1), pages 1-11, January.
    2. Pasupathy, A. & Velraj, R. & Seeniraj, R.V., 2008. "Phase change material-based building architecture for thermal management in residential and commercial establishments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 39-64, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nie, Binjian & She, Xiaohui & Du, Zheng & Xie, Chunping & Li, Yongliang & He, Zhubing & Ding, Yulong, 2019. "System performance and economic assessment of a thermal energy storage based air-conditioning unit for transport applications," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Zhou, D. & Zhao, C.Y. & Tian, Y., 2012. "Review on thermal energy storage with phase change materials (PCMs) in building applications," Applied Energy, Elsevier, vol. 92(C), pages 593-605.
    3. Ikutegbe, Charles A. & Farid, Mohammed M., 2020. "Application of phase change material foam composites in the built environment: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    4. Waqas, Adeel & Ud Din, Zia, 2013. "Phase change material (PCM) storage for free cooling of buildings—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 607-625.
    5. Wang, Weilong & Yang, Xiaoxi & Fang, Yutang & Ding, Jing & Yan, Jinyue, 2009. "Preparation and thermal properties of polyethylene glycol/expanded graphite blends for energy storage," Applied Energy, Elsevier, vol. 86(9), pages 1479-1483, September.
    6. Tumirah, K. & Hussein, M.Z. & Zulkarnain, Z. & Rafeadah, R., 2014. "Nano-encapsulated organic phase change material based on copolymer nanocomposites for thermal energy storage," Energy, Elsevier, vol. 66(C), pages 881-890.
    7. Adeyemi Oginni, 2018. "Comparative Analysis of the Thermal Performance of Selected Public School Classroom Buildingin Lagos, Nigeria," Proceedings of the 8th International RAIS Conference, March 26-27, 2018 013, Research Association for Interdisciplinary Studies.
    8. Zhou, Guobing & Yang, Yongping & Xu, Hong, 2011. "Performance of shape-stabilized phase change material wallboard with periodical outside heat flux waves," Applied Energy, Elsevier, vol. 88(6), pages 2113-2121, June.
    9. Qiu, Xiaolin & Li, Wei & Song, Guolin & Chu, Xiaodong & Tang, Guoyi, 2012. "Microencapsulated n-octadecane with different methylmethacrylate-based copolymer shells as phase change materials for thermal energy storage," Energy, Elsevier, vol. 46(1), pages 188-199.
    10. Ren, Zhengen & Chen, Dong, 2018. "Modelling study of the impact of thermal comfort criteria on housing energy use in Australia," Applied Energy, Elsevier, vol. 210(C), pages 152-166.
    11. Salunkhe, Pramod B. & Shembekar, Prashant S., 2012. "A review on effect of phase change material encapsulation on the thermal performance of a system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5603-5616.
    12. Giro-Paloma, Jessica & Martínez, Mònica & Cabeza, Luisa F. & Fernández, A. Inés, 2016. "Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1059-1075.
    13. Wu, Minqiang & Li, Tingxian & He, Qifan & Du, Ruxue & Wang, Ruzhu, 2022. "Thermally conductive and form-stable phase change composite for building thermal management," Energy, Elsevier, vol. 239(PA).
    14. AL-Saadi, Saleh Nasser & Zhai, Zhiqiang (John), 2013. "Modeling phase change materials embedded in building enclosure: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 659-673.
    15. Abdul Mujeebu, Muhammad & Alshamrani, Othman Subhi, 2016. "Prospects of energy conservation and management in buildings – The Saudi Arabian scenario versus global trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1647-1663.
    16. Beatrice Castellani & Elena Morini & Mirko Filipponi & Andrea Nicolini & Massimo Palombo & Franco Cotana & Federico Rossi, 2014. "Clathrate Hydrates for Thermal Energy Storage in Buildings: Overview of Proper Hydrate-Forming Compounds," Sustainability, MDPI, vol. 6(10), pages 1-15, September.
    17. Rathod, Manish K. & Banerjee, Jyotirmay, 2013. "Thermal stability of phase change materials used in latent heat energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 246-258.
    18. Yun, Geun Young & Steemers, Koen, 2011. "Behavioural, physical and socio-economic factors in household cooling energy consumption," Applied Energy, Elsevier, vol. 88(6), pages 2191-2200, June.
    19. Jingchun Shen & Benedetta Copertaro & Xingxing Zhang & Johannes Koke & Peter Kaufmann & Stefan Krause, 2019. "Exploring the Potential of Climate-Adaptive Container Building Design under Future Climates Scenarios in Three Different Climate Zones," Sustainability, MDPI, vol. 12(1), pages 1-21, December.
    20. Quesada, Guillermo & Rousse, Daniel & Dutil, Yvan & Badache, Messaoud & Hallé, Stéphane, 2012. "A comprehensive review of solar facades. Opaque solar facades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2820-2832.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:14:y:2010:i:9:p:2626-2640. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.