IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6417-d651501.html
   My bibliography  Save this article

OC6 Phase Ib: Floating Wind Component Experiment for Difference-Frequency Hydrodynamic Load Validation

Author

Listed:
  • Amy Robertson

    (National Renewable Energy Laboratory, Golden, CO 80401, USA)

  • Lu Wang

    (National Renewable Energy Laboratory, Golden, CO 80401, USA)

Abstract

A new validation campaign was conducted at the W2 Harold Alfond Ocean Engineering Laboratory at the University of Maine to investigate the hydrodynamic loading on floating offshore wind substructures, with a focus on the low-frequency contributions that tend to drive extreme and fatigue loading in semisubmersible designs. A component-level approach was taken to examine the hydrodynamic loads on individual parts of the semisubmersible in isolation and then in the presence of other members to assess the change in hydrodynamic loading. A variety of wave conditions were investigated, including bichromatic waves, to provide a direct assessment of difference-frequency wave loading. An assessment of the impact of wave uncertainty on the loading was performed, with the goal of enabling validation with this dataset of numerical models with different levels of fidelity. The dataset is openly available for public use and can be downloaded from the U.S. Department of Energy Data Archive and Portal.

Suggested Citation

  • Amy Robertson & Lu Wang, 2021. "OC6 Phase Ib: Floating Wind Component Experiment for Difference-Frequency Hydrodynamic Load Validation," Energies, MDPI, vol. 14(19), pages 1-26, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6417-:d:651501
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6417/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6417/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lopez-Pavon, Carlos & Souto-Iglesias, Antonio, 2015. "Hydrodynamic coefficients and pressure loads on heave plates for semi-submersible floating offshore wind turbines: A comparative analysis using large scale models," Renewable Energy, Elsevier, vol. 81(C), pages 864-881.
    2. Simos, Alexandre N. & Ruggeri, Felipe & Watai, Rafael A. & Souto-Iglesias, Antonio & Lopez-Pavon, Carlos, 2018. "Slow-drift of a floating wind turbine: An assessment of frequency-domain methods based on model tests," Renewable Energy, Elsevier, vol. 116(PA), pages 133-154.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bonaventura Tagliafierro & Madjid Karimirad & Iván Martínez-Estévez & José M. Domínguez & Giacomo Viccione & Alejandro J. C. Crespo, 2022. "Numerical Assessment of a Tension-Leg Platform Wind Turbine in Intermediate Water Using the Smoothed Particle Hydrodynamics Method," Energies, MDPI, vol. 15(11), pages 1-23, May.
    2. Wang, Lu & Robertson, Amy & Jonkman, Jason & Yu, Yi-Hsiang, 2022. "OC6 phase I: Improvements to the OpenFAST predictions of nonlinear, low-frequency responses of a floating offshore wind turbine platform," Renewable Energy, Elsevier, vol. 187(C), pages 282-301.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu Wang & Amy Robertson & Jason Jonkman & Yi-Hsiang Yu, 2020. "Uncertainty Assessment of CFD Investigation of the Nonlinear Difference-Frequency Wave Loads on a Semisubmersible FOWT Platform," Sustainability, MDPI, vol. 13(1), pages 1-25, December.
    2. Yang, J.J. & He, E.M., 2020. "Coupled modeling and structural vibration control for floating offshore wind turbine," Renewable Energy, Elsevier, vol. 157(C), pages 678-694.
    3. Conghuan Le & Yane Li & Hongyan Ding, 2019. "Study on the Coupled Dynamic Responses of a Submerged Floating Wind Turbine under Different Mooring Conditions," Energies, MDPI, vol. 12(3), pages 1-21, January.
    4. Simos, Alexandre N. & Ruggeri, Felipe & Watai, Rafael A. & Souto-Iglesias, Antonio & Lopez-Pavon, Carlos, 2018. "Slow-drift of a floating wind turbine: An assessment of frequency-domain methods based on model tests," Renewable Energy, Elsevier, vol. 116(PA), pages 133-154.
    5. Wang, Lu & Robertson, Amy & Jonkman, Jason & Yu, Yi-Hsiang, 2022. "OC6 phase I: Improvements to the OpenFAST predictions of nonlinear, low-frequency responses of a floating offshore wind turbine platform," Renewable Energy, Elsevier, vol. 187(C), pages 282-301.
    6. Subbulakshmi, A. & Verma, Mohit & Keerthana, M. & Sasmal, Saptarshi & Harikrishna, P. & Kapuria, Santosh, 2022. "Recent advances in experimental and numerical methods for dynamic analysis of floating offshore wind turbines — An integrated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    7. Ishihara, Takeshi & Zhang, Shining, 2019. "Prediction of dynamic response of semi-submersible floating offshore wind turbine using augmented Morison's equation with frequency dependent hydrodynamic coefficients," Renewable Energy, Elsevier, vol. 131(C), pages 1186-1207.
    8. Pang, Yanhua & He, Qun & Jiang, Guoqian & Xie, Ping, 2020. "Spatio-temporal fusion neural network for multi-class fault diagnosis of wind turbines based on SCADA data," Renewable Energy, Elsevier, vol. 161(C), pages 510-524.
    9. Berenjkoob, Mahdi Nazari & Ghiasi, Mahmoud & Soares, C.Guedes, 2021. "Influence of the shape of a buoy on the efficiency of its dual-motion wave energy conversion," Energy, Elsevier, vol. 214(C).
    10. Martinez, A. & Iglesias, G., 2022. "Mapping of the levelised cost of energy for floating offshore wind in the European Atlantic," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    11. Meng, Haoran & Su, Hao & Guo, Jia & Qu, Timing & Lei, Liping, 2022. "Experimental investigation on the power and thrust characteristics of a wind turbine model subjected to surge and sway motions," Renewable Energy, Elsevier, vol. 181(C), pages 1325-1337.
    12. Martinez, A. & Murphy, L. & Iglesias, G., 2023. "Evolution of offshore wind resources in Northern Europe under climate change," Energy, Elsevier, vol. 269(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6417-:d:651501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.