IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6282-d648704.html
   My bibliography  Save this article

Numerical Simulation of Leakage and Diffusion Process of LNG Storage Tanks

Author

Listed:
  • Xue Li

    (School of Petroleum Engineering, Changzhou University, Changzhou 213164, China
    Jiangsu Key Laboratory of Oil-Gas Storage and Transportation Technology, Changzhou 213164, China)

  • Ning Zhou

    (School of Petroleum Engineering, Changzhou University, Changzhou 213164, China)

  • Bing Chen

    (Institute of Industrial Safety, China Academy of Safety Science and Technology, Beijing 100012, China)

  • Qian Zhang

    (School of Petroleum Engineering, Changzhou University, Changzhou 213164, China)

  • Vamegh Rasouli

    (College of Engineering & Mines, University of North Dakota, Grand Forks, ND 58202, USA)

  • Xuanya Liu

    (Tianjin Fire Research Institute of MEM, Tianjin 300381, China)

  • Weiqiu Huang

    (School of Petroleum Engineering, Changzhou University, Changzhou 213164, China)

  • Lingchen Kong

    (Changzhou Institute of Technology, Changzhou 213032, China)

Abstract

To investigate the evolution process of LNG (Liquefied Natural Gas) liquid pool and gas cloud diffusion, the Realizable k - ε model and Eluerian model were used to numerically simulate the liquid phase leakage and diffusion process of LNG storage tanks. The experimental results showed that some LNG flashed and vaporized rapidly to form a combustible cloud during the continuous leakage. The diffusion of the explosive cloud was divided into heavy gas accumulation, entrainment heat transfer, and light gas drift. The vapor cloud gradually separated into two parts from the whole “fan leaf shape”. One part was a heavy gas cloud; the other part was a light gas cloud that spread with the wind in the downwind direction. The change of leakage aperture had a greater impact on the whole spill and dispersion process of the storage tank. The increasing leakage aperture would lead to 10.3 times increase in liquid pool area, 78.5% increase in downwind dispersion of methane concentration at 0.5 LFL, 22.6% increase in crosswind dispersion of methane concentration at 0.5 LFL, and 249% increase in flammable vapor cloud volume. Within the variation range of the leakage aperture, the trend of the gas cloud diffusion remained consistent, but the time for the liquid pool to keep stable and the gas cloud to enter the next diffusion stage was delayed. The low-pressure cavity area within 200 m of the leeward surface of the storage tank would accumulate heavy gas for a long time, forming a local high concentration area, which should be an area of focus for alert prediction.

Suggested Citation

  • Xue Li & Ning Zhou & Bing Chen & Qian Zhang & Vamegh Rasouli & Xuanya Liu & Weiqiu Huang & Lingchen Kong, 2021. "Numerical Simulation of Leakage and Diffusion Process of LNG Storage Tanks," Energies, MDPI, vol. 14(19), pages 1-14, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6282-:d:648704
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6282/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6282/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Necci, Amos & Argenti, Francesca & Landucci, Gabriele & Cozzani, Valerio, 2014. "Accident scenarios triggered by lightning strike on atmospheric storage tanks," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 30-46.
    2. Eser, P. & Chokani, N. & Abhari, R., 2019. "Impact of Nord Stream 2 and LNG on gas trade and security of supply in the European gas network of 2030," Applied Energy, Elsevier, vol. 238(C), pages 816-830.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu Tang & Dali Wu & Sanming Wang & Xuhai Pan, 2023. "Research on Real-Time Prediction of Hydrogen Sulfide Leakage Diffusion Concentration of New Energy Based on Machine Learning," Sustainability, MDPI, vol. 15(9), pages 1-18, April.
    2. Agnieszka Magdalena Kalbarczyk-Jedynak & Magdalena Ślączka-Wilk & Magdalena Kaup & Wojciech Ślączka & Dorota Łozowicka, 2022. "Assessment of Explosion Safety Status within the Area of an LNG Terminal in a Function of Selected Parameters," Energies, MDPI, vol. 15(11), pages 1-34, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. V. A. Volkonsky & A. I. Kuzovkin, 2021. "Benefits and Losses for European Countries from the Northern Stream-2 Gas Pipeline: Overview of Estimates by Scientists and Energy Industries," Studies on Russian Economic Development, Springer, vol. 32(6), pages 689-694, November.
    2. Xuejie Li & Yuan Xue & Yuxing Li & Qingshan Feng, 2022. "An Optimization Method for a Compressor Standby Scheme Based on Reliability Analysis," Energies, MDPI, vol. 15(21), pages 1-16, November.
    3. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    4. Jiajun Wang & Zhichao He & Wenguo Weng, 2020. "A review of the research into the relations between hazards in multi-hazard risk analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2003-2026, December.
    5. Landucci, Gabriele & Argenti, Francesca & Tugnoli, Alessandro & Cozzani, Valerio, 2015. "Quantitative assessment of safety barrier performance in the prevention of domino scenarios triggered by fire," Reliability Engineering and System Safety, Elsevier, vol. 143(C), pages 30-43.
    6. Shen, Xiaojun & Li, Xingyi & Yuan, Jiahai & Jin, Yu, 2022. "A hydrogen-based zero-carbon microgrid demonstration in renewable-rich remote areas: System design and economic feasibility," Applied Energy, Elsevier, vol. 326(C).
    7. Vasyl Zapukhliak & Lyubomyr Poberezhny & Pavlo Maruschak & Volodymyr Grudz Jr. & Roman Stasiuk & Janette Brezinová & Anna Guzanová, 2019. "Mathematical Modeling of Unsteady Gas Transmission System Operating Conditions under Insufficient Loading," Energies, MDPI, vol. 12(7), pages 1-14, April.
    8. Riepin, Iegor & Schmidt, Matthew & Baringo, Luis & Müsgens, Felix, 2022. "Adaptive robust optimization for European strategic gas infrastructure planning," Applied Energy, Elsevier, vol. 324(C).
    9. Sesini, Marzia & Giarola, Sara & Hawkes, Adam D., 2021. "Strategic natural gas storage coordination among EU member states in response to disruption in the trans Austria gas pipeline: A stochastic approach to solidarity," Energy, Elsevier, vol. 235(C).
    10. Landucci, Gabriele & Necci, Amos & Antonioni, Giacomo & Argenti, Francesca & Cozzani, Valerio, 2017. "Risk assessment of mitigated domino scenarios in process facilities," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 37-53.
    11. Tóth, Borbála Takácsné & Kotek, Péter & Selei, Adrienn, 2020. "Rerouting Europe's gas transit landscape - Effects of Russian natural gas infrastructure strategy on the V4," Energy Policy, Elsevier, vol. 146(C).
    12. Misuri, Alessio & Landucci, Gabriele & Cozzani, Valerio, 2021. "Assessment of safety barrier performance in the mitigation of domino scenarios caused by Natech events," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    13. Pagani, M. & Maire, P. & Korosec, W. & Chokani, N. & Abhari, R.S., 2020. "District heat network extension to decarbonise building stock: A bottom-up agent-based approach," Applied Energy, Elsevier, vol. 272(C).
    14. Matteini, Anita & Argenti, Francesca & Salzano, Ernesto & Cozzani, Valerio, 2019. "A comparative analysis of security risk assessment methodologies for the chemical industry," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    15. Wang, Jian & Gao, Shibin & Yu, Long & Zhang, Dongkai & Xie, Chenlin & Chen, Ke & Kou, Lei, 2023. "Data-driven lightning-related failure risk prediction of overhead contact lines based on Bayesian network with spatiotemporal fragility model," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    16. Pagani, M. & Korosec, W. & Chokani, N. & Abhari, R.S., 2019. "User behaviour and electric vehicle charging infrastructure: An agent-based model assessment," Applied Energy, Elsevier, vol. 254(C).
    17. Çam , Eren & Lencz, Dominic, 2021. "Internal and external effects of pricing short-term gas transmission capacity via multipliers," EWI Working Papers 2021-4, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    18. Anna M. Chernysheva & Nikolay P. Gusakov & Alexandra A. Trofimova & Mariya A. Bulatenko, 2019. "Diversification of Transit Risks of Oil Supplies Bypassing Ukraine as the Basis of Energy Security in Europe," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 461-468.
    19. Misuri, Alessio & Landucci, Gabriele & Cozzani, Valerio, 2021. "Assessment of risk modification due to safety barrier performance degradation in Natech events," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    20. Wood, Steve & Henke, Otto, 2021. "Denmark and Nord Stream 2: A small state's role in global energy politics," Energy Policy, Elsevier, vol. 148(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6282-:d:648704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.