IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6247-d648065.html
   My bibliography  Save this article

SPICE-Aided Modeling of Daily and Seasonal Changes in Properties of the Actual Photovoltaic Installation

Author

Listed:
  • Krzysztof Górecki

    (Department of Marine Electronics, Gdynia Maritime University, Morska 83, 81-225 Gdynia, Poland)

  • Jacek Dąbrowski

    (Department of Marine Electronics, Gdynia Maritime University, Morska 83, 81-225 Gdynia, Poland)

  • Ewa Krac

    (Department of Marine Electronics, Gdynia Maritime University, Morska 83, 81-225 Gdynia, Poland)

Abstract

This article proposes a model of an actual photovoltaic installation situated in the Gdynia Maritime University, Poland. This model is formulated in the form of a SPICE network. In the presented model, the influence of selected weather parameters and thermal phenomena on the properties of the components of this installation are taken into account. The structure of the analyzed installation and the form of the formulated model are both presented. By means of this model, values of the power produced by the installation considered in different seasons and different times of the day are computed. The obtained computation results are compared to the measurement results. Good agreement between the results of measurements and computations is obtained. The obtained results of the investigations confirm the considerable influence of weather conditions, as well as daily and seasonal changes in solar irradiation and the ambient temperature, on the electrical energy produced. In the summer months, a decrease in the energy efficiency of the conversion of solar energy into electrical energy in comparison to the winter months is also visible and can even be twofold.

Suggested Citation

  • Krzysztof Górecki & Jacek Dąbrowski & Ewa Krac, 2021. "SPICE-Aided Modeling of Daily and Seasonal Changes in Properties of the Actual Photovoltaic Installation," Energies, MDPI, vol. 14(19), pages 1-14, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6247-:d:648065
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6247/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6247/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chenni, R. & Makhlouf, M. & Kerbache, T. & Bouzid, A., 2007. "A detailed modeling method for photovoltaic cells," Energy, Elsevier, vol. 32(9), pages 1724-1730.
    2. Abdulaziz Almutairi & Khairy Sayed & Naif Albagami & Ahmed G. Abo-Khalil & Hedra Saleeb, 2021. "Multi-Port PWM DC-DC Power Converter for Renewable Energy Applications," Energies, MDPI, vol. 14(12), pages 1-22, June.
    3. Eleonora Riva Sanseverino & Maurizio Cellura & Le Quyen Luu & Maria Anna Cusenza & Ninh Nguyen Quang & Nam Hoai Nguyen, 2021. "Life-Cycle Land-Use Requirement for PV in Vietnam," Energies, MDPI, vol. 14(4), pages 1-11, February.
    4. Khairy Sayed & Mohammed G. Gronfula & Hamdy A. Ziedan, 2020. "Novel Soft-Switching Integrated Boost DC-DC Converter for PV Power System," Energies, MDPI, vol. 13(3), pages 1-17, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rehman, Shafiqur & El-Amin, Ibrahim, 2012. "Performance evaluation of an off-grid photovoltaic system in Saudi Arabia," Energy, Elsevier, vol. 46(1), pages 451-458.
    2. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    3. Uche, J. & Círez, F. & Bayod, A.A. & Martínez, A., 2013. "On-grid and off-grid batch-ED (electrodialysis) process: Simulation and experimental tests," Energy, Elsevier, vol. 57(C), pages 44-54.
    4. Jordehi, A. Rezaee, 2016. "Parameter estimation of solar photovoltaic (PV) cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 354-371.
    5. Humada, Ali M. & Hojabri, Mojgan & Mekhilef, Saad & Hamada, Hussein M., 2016. "Solar cell parameters extraction based on single and double-diode models: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 494-509.
    6. Belqasem Aljafari & Gunapriya Devarajan & Sivaranjani Subramani & Subramaniyaswamy Vairavasundaram, 2023. "Intelligent RBF-Fuzzy Controller Based Non-Isolated DC-DC Multi-Port Converter for Renewable Energy Applications," Sustainability, MDPI, vol. 15(12), pages 1-22, June.
    7. Jerez, S. & Thais, F. & Tobin, I. & Wild, M. & Colette, A. & Yiou, P. & Vautard, R., 2015. "The CLIMIX model: A tool to create and evaluate spatially-resolved scenarios of photovoltaic and wind power development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1-15.
    8. Ali Abedaljabar Al-Samawi & Hafedh Trabelsi, 2022. "New Nine-Level Cascade Multilevel Inverter with a Minimum Number of Switches for PV Systems," Energies, MDPI, vol. 15(16), pages 1-25, August.
    9. Ghanim, Marrwa S. & Farhan, Ammar A., 2023. "Projected patterns of climate change impact on photovoltaic energy potential: A case study of Iraq," Renewable Energy, Elsevier, vol. 204(C), pages 338-346.
    10. Truong-Duy Duong & Minh-Khai Nguyen & Tan-Tai Tran & Dai-Van Vo & Young-Cheol Lim & Joon-Ho Choi, 2022. "Topology Review of Three-Phase Two-Level Transformerless Photovoltaic Inverters for Common-Mode Voltage Reduction," Energies, MDPI, vol. 15(9), pages 1-18, April.
    11. Wang, Gang & Zhao, Ke & Qiu, Tian & Yang, Xinsheng & Zhang, Yong & Zhao, Yong, 2016. "The error analysis of the reverse saturation current of the diode in the modeling of photovoltaic modules," Energy, Elsevier, vol. 115(P1), pages 478-485.
    12. Park, K.E. & Kang, G.H. & Kim, H.I. & Yu, G.J. & Kim, J.T., 2010. "Analysis of thermal and electrical performance of semi-transparent photovoltaic (PV) module," Energy, Elsevier, vol. 35(6), pages 2681-2687.
    13. Lo Brano, Valerio & Ciulla, Giuseppina, 2013. "An efficient analytical approach for obtaining a five parameters model of photovoltaic modules using only reference data," Applied Energy, Elsevier, vol. 111(C), pages 894-903.
    14. Benedetto Nastasi & Meysam Majidi Nezhad, 2021. "GIS and Remote Sensing for Renewable Energy Assessment and Maps," Energies, MDPI, vol. 15(1), pages 1-3, December.
    15. Ma, Tao & Yang, Hongxing & Lu, Lin, 2014. "Solar photovoltaic system modeling and performance prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 304-315.
    16. Aissatou Ndiaye & Mounkaila Saley Moussa & Cheikh Dione & Windmanagda Sawadogo & Jan Bliefernicht & Laouali Dungall & Harald Kunstmann, 2022. "Projected Changes in Solar PV and Wind Energy Potential over West Africa: An Analysis of CORDEX-CORE Simulations," Energies, MDPI, vol. 15(24), pages 1-22, December.
    17. Dong, Xiao-Jian & Shen, Jia-Ni & He, Guo-Xin & Ma, Zi-Feng & He, Yi-Jun, 2021. "A general radial basis function neural network assisted hybrid modeling method for photovoltaic cell operating temperature prediction," Energy, Elsevier, vol. 234(C).
    18. Alzahrani, Mussad & Shanks, Katie & Mallick, Tapas K., 2021. "Advances and limitations of increasing solar irradiance for concentrating photovoltaics thermal system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    19. Baldwin Cortés & Roberto Tapia & Juan J. Flores, 2021. "System-Independent Irradiance Sensorless ANN-Based MPPT for Photovoltaic Systems in Electric Vehicles," Energies, MDPI, vol. 14(16), pages 1-18, August.
    20. Arabkoohsar, A. & Ismail, K.A.R. & Machado, L. & Koury, R.N.N., 2016. "Energy consumption minimization in an innovative hybrid power production station by employing PV and evacuated tube collector solar thermal systems," Renewable Energy, Elsevier, vol. 93(C), pages 424-441.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6247-:d:648065. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.