IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v221y2024ics0960148123017032.html
   My bibliography  Save this article

Optical and electrical behavior of an underwater linear-focusing solar concentrating photovoltaic

Author

Listed:
  • Liang, Shen
  • Zheng, Hongfei
  • Kang, Huifang
  • Zhao, Zhiyong
  • Ma, Xinglong
  • Zhu, Ziye
  • Cheng, Haiying
  • Yang, Jinrui

Abstract

Limited attention has been devoted to the harvesting of underwater solar energy for underwater or near-water energy use scenarios. This paper proposes an underwater linear-focusing solar concentrating photovoltaic, which holds the potential to energize subaquatic devices or cater to the electricity needs of islands and coastal regions lacking adequate electricity and terrestrial resources. It mainly encompasses a novel designed underwater solar concentrator with a satisfactory light interception angle and the photovoltaic module. To determine the concentrator's optical performance, optical simulations are conducted. The results illustrate that within the incident angle of 20°, the concentrator can 100% intercept the incident light and has an energy concentration ratio greater than 2.37. Besides, a theoretical model and an experimental setup with solar cells' areas of 0.006 m2 are developed to study its electrical performance. Its electrical efficiency is found to be 12.60% at 0 cm depth and 6.56% at 100 cm depth. Additionally, the greater the water turbidity, the greater the decrease in its electrical efficiency as the water depth increases. At the water depth of 100 cm, the electrical efficiency decreases by 84.27% as the water turbidity increases from 0 NTU to 15 NTU. This work demonstrates the practicality and validity of the underwater solar concentrating photovoltaic technology.

Suggested Citation

  • Liang, Shen & Zheng, Hongfei & Kang, Huifang & Zhao, Zhiyong & Ma, Xinglong & Zhu, Ziye & Cheng, Haiying & Yang, Jinrui, 2024. "Optical and electrical behavior of an underwater linear-focusing solar concentrating photovoltaic," Renewable Energy, Elsevier, vol. 221(C).
  • Handle: RePEc:eee:renene:v:221:y:2024:i:c:s0960148123017032
    DOI: 10.1016/j.renene.2023.119788
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123017032
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119788?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liang, Shen & Zheng, Hongfei & Ma, Xinglong & Cui, Dandan, 2020. "Design and experimental investigation on a solar concentrating photovoltaic underwater," Energy, Elsevier, vol. 204(C).
    2. Gao, Yuhe & Ji, Jie & Han, Kedong & Zhang, Feng, 2021. "Experimental and numerical study of a PV/T direct-driven refrigeration/heating system," Energy, Elsevier, vol. 230(C).
    3. Wang, Guohui & Yang, Yanan & Wang, Shuxin & Zhang, Hongwei & Wang, Yanhui, 2019. "Efficiency analysis and experimental validation of the ocean thermal energy conversion with phase change material for underwater vehicle," Applied Energy, Elsevier, vol. 248(C), pages 475-488.
    4. Chen, Jing & Kong, Hui & Wang, Hongsheng, 2023. "A novel high-efficiency solar thermochemical cycle for fuel production based on chemical-looping cycle oxygen removal," Applied Energy, Elsevier, vol. 343(C).
    5. Muaddi, J.A. & Jamal, M.A., 1991. "Solar spectrum at depth in water," Renewable Energy, Elsevier, vol. 1(1), pages 31-35.
    6. Chenni, R. & Makhlouf, M. & Kerbache, T. & Bouzid, A., 2007. "A detailed modeling method for photovoltaic cells," Energy, Elsevier, vol. 32(9), pages 1724-1730.
    7. Tina, G.M. & Rosa-Clot, M. & Rosa-Clot, P. & Scandura, P.F., 2012. "Optical and thermal behavior of submerged photovoltaic solar panel: SP2," Energy, Elsevier, vol. 39(1), pages 17-26.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cazzaniga, R. & Cicu, M. & Rosa-Clot, M. & Rosa-Clot, P. & Tina, G.M. & Ventura, C., 2018. "Floating photovoltaic plants: Performance analysis and design solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1730-1741.
    2. Claus, R. & López, M., 2022. "Key issues in the design of floating photovoltaic structures for the marine environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    3. Rehman, Shafiqur & El-Amin, Ibrahim, 2012. "Performance evaluation of an off-grid photovoltaic system in Saudi Arabia," Energy, Elsevier, vol. 46(1), pages 451-458.
    4. Vivar, M. & H, Sharon & Fuentes, M., 2024. "Photovoltaic system adoption in water related technologies – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    5. Yao, Jian & Dou, Pengbo & Zheng, Sihang & Zhao, Yao & Dai, Yanjun & Zhu, Junjie & Novakovic, Vojislav, 2022. "Co-generation ability investigation of the novel structured PVT heat pump system and its effect on the “Carbon neutral” strategy of Shanghai," Energy, Elsevier, vol. 239(PA).
    6. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    7. Uche, J. & Círez, F. & Bayod, A.A. & Martínez, A., 2013. "On-grid and off-grid batch-ED (electrodialysis) process: Simulation and experimental tests," Energy, Elsevier, vol. 57(C), pages 44-54.
    8. Jordehi, A. Rezaee, 2016. "Parameter estimation of solar photovoltaic (PV) cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 354-371.
    9. Li, Guiqiang & Lu, Yashun & Zhao, Xudong, 2022. "The Gaussian non-uniform temperature field on PV cells - A unique solution for enhancing the performance of the PV/T module," Energy, Elsevier, vol. 250(C).
    10. Humada, Ali M. & Hojabri, Mojgan & Mekhilef, Saad & Hamada, Hussein M., 2016. "Solar cell parameters extraction based on single and double-diode models: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 494-509.
    11. Jerez, S. & Thais, F. & Tobin, I. & Wild, M. & Colette, A. & Yiou, P. & Vautard, R., 2015. "The CLIMIX model: A tool to create and evaluate spatially-resolved scenarios of photovoltaic and wind power development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1-15.
    12. Abdelrazik, A.S. & Shboul, Bashar & Elwardany, Mohamed & Zohny, R.N. & Osama, Ahmed, 2022. "The recent advancements in the building integrated photovoltaic/thermal (BIPV/T) systems: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    13. Xuan, Qingdong & Li, Guiqiang & Yang, Honglun & Gao, Cai & Jiang, Bin & Liu, Xiangnong & Ji, Jie & Zhao, Xudong & Pei, Gang, 2021. "Performance evaluation for the dielectric asymmetric compound parabolic concentrator with almost unity angular acceptance efficiency," Energy, Elsevier, vol. 233(C).
    14. Ghanim, Marrwa S. & Farhan, Ammar A., 2023. "Projected patterns of climate change impact on photovoltaic energy potential: A case study of Iraq," Renewable Energy, Elsevier, vol. 204(C), pages 338-346.
    15. Wang, Gang & Zhao, Ke & Qiu, Tian & Yang, Xinsheng & Zhang, Yong & Zhao, Yong, 2016. "The error analysis of the reverse saturation current of the diode in the modeling of photovoltaic modules," Energy, Elsevier, vol. 115(P1), pages 478-485.
    16. Park, K.E. & Kang, G.H. & Kim, H.I. & Yu, G.J. & Kim, J.T., 2010. "Analysis of thermal and electrical performance of semi-transparent photovoltaic (PV) module," Energy, Elsevier, vol. 35(6), pages 2681-2687.
    17. Lo Brano, Valerio & Ciulla, Giuseppina, 2013. "An efficient analytical approach for obtaining a five parameters model of photovoltaic modules using only reference data," Applied Energy, Elsevier, vol. 111(C), pages 894-903.
    18. Ma, Tao & Yang, Hongxing & Lu, Lin, 2014. "Solar photovoltaic system modeling and performance prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 304-315.
    19. Aissatou Ndiaye & Mounkaila Saley Moussa & Cheikh Dione & Windmanagda Sawadogo & Jan Bliefernicht & Laouali Dungall & Harald Kunstmann, 2022. "Projected Changes in Solar PV and Wind Energy Potential over West Africa: An Analysis of CORDEX-CORE Simulations," Energies, MDPI, vol. 15(24), pages 1-22, December.
    20. Dong, Xiao-Jian & Shen, Jia-Ni & He, Guo-Xin & Ma, Zi-Feng & He, Yi-Jun, 2021. "A general radial basis function neural network assisted hybrid modeling method for photovoltaic cell operating temperature prediction," Energy, Elsevier, vol. 234(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:221:y:2024:i:c:s0960148123017032. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.