IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5766-d634680.html
   My bibliography  Save this article

Research on Decoupled Optimal Control of Straight-Line Driving Stability of Electric Vehicles Driven by Four-Wheel Hub Motors

Author

Listed:
  • Songlin Yang

    (School of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832000, China)

  • Jingan Feng

    (School of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832000, China)

  • Bao Song

    (School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract

The optimal control strategy for the decoupling of drive torque is proposed for the problems of runaway and driving stability in straight-line driving of electric vehicles driven by four-wheel hub motors. The strategy uses a hierarchical control logic, with the upper control logic layer being responsible for additional transverse moment calculation and driving anti-slip control; the middle control logic layer is responsible for the spatial motion decoupling for the underlying coordinated distribution of the four-wheel drive torque, on the basis of which the drive anti-skid control of a wheel motor-driven electric vehicle that takes into account the transverse motion of the whole vehicle is realized; the lower control logic layer is responsible for the optimal distribution of the driving torque of the vehicle speed following control. Based on the vehicle dynamics software Carsim2019.0 and MATLAB/Simulink, a simulation model of a four-wheel hub motor-driven electric vehicle control system was built and simulated under typical operating conditions such as high coefficient of adhesion, low coefficient of adhesion and opposing road surfaces. The research shows that the wheel motor drive has the ability to control the stability of the whole vehicle with large intensity that the conventional half-axle drive does not have. Using the proposed joint decoupling control of the transverse pendulum motion and slip rate as well as the optimal distribution of the drive force with speed following, the transverse pendulum angular speed and slip rate can be effectively controlled with the premise of ensuring the vehicle speed, thus greatly improving the straight-line driving stability of the vehicle.

Suggested Citation

  • Songlin Yang & Jingan Feng & Bao Song, 2021. "Research on Decoupled Optimal Control of Straight-Line Driving Stability of Electric Vehicles Driven by Four-Wheel Hub Motors," Energies, MDPI, vol. 14(18), pages 1-25, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5766-:d:634680
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5766/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5766/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guo, Lingxiong & Zhang, Xudong & Zou, Yuan & Guo, Ningyuan & Li, Jianwei & Du, Guodong, 2021. "Cost-optimal energy management strategy for plug-in hybrid electric vehicles with variable horizon speed prediction and adaptive state-of-charge reference," Energy, Elsevier, vol. 232(C).
    2. Guodong Yin & Shanbao Wang & Xianjian Jin, 2013. "Optimal Slip Ratio Based Fuzzy Control of Acceleration Slip Regulation for Four-Wheel Independent Driving Electric Vehicles," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-7, November.
    3. Zhenyuan Bai & Yufeng Lu & Yunxia Li, 2020. "Method of Improving Lateral Stability by Using Additional Yaw Moment of Semi-Trailer," Energies, MDPI, vol. 13(23), pages 1-23, November.
    4. Zhenpo Wang & Yachao Wang & Lei Zhang & Mingchun Liu, 2017. "Vehicle Stability Enhancement through Hierarchical Control for a Four-Wheel-Independently-Actuated Electric Vehicle," Energies, MDPI, vol. 10(7), pages 1-18, July.
    5. Jemma J. Makrygiorgou & Antonio T. Alexandridis, 2019. "Power Electronic Control Design for Stable EV Motor and Battery Operation during a Route," Energies, MDPI, vol. 12(10), pages 1-21, May.
    6. Yang, Chao & Wang, Muyao & Wang, Weida & Pu, Zesong & Ma, Mingyue, 2021. "An efficient vehicle-following predictive energy management strategy for PHEV based on improved sequential quadratic programming algorithm," Energy, Elsevier, vol. 219(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinming Xu & Yang Gu & Guangjun Liu, 2022. "Study on a Wheel Electric Drive System with SRD for Loader," Energies, MDPI, vol. 15(10), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Xilei & Fu, Jianqin & Yang, Huiyong & Xie, Mingke & Liu, Jingping, 2023. "An energy management strategy for plug-in hybrid electric vehicles based on deep learning and improved model predictive control," Energy, Elsevier, vol. 269(C).
    2. Wang, Weida & Chen, Yincong & Yang, Chao & Li, Ying & Xu, Bin & Xiang, Changle, 2022. "An enhanced hypotrochoid spiral optimization algorithm based intertwined optimal sizing and control strategy of a hybrid electric air-ground vehicle," Energy, Elsevier, vol. 257(C).
    3. Lv, Chengkun & Huang, Qian & Chang, Juntao & Wang, Ziao & Zheng, Jialin & Yu, Daren, 2023. "Mode transition path optimization for turbine-based combined-cycle ramjet stage under uncertainty propagation of integrated airframe-propulsion system," Energy, Elsevier, vol. 268(C).
    4. Dong, Peng & Zhao, Junwei & Liu, Xuewu & Wu, Jian & Xu, Xiangyang & Liu, Yanfang & Wang, Shuhan & Guo, Wei, 2022. "Practical application of energy management strategy for hybrid electric vehicles based on intelligent and connected technologies: Development stages, challenges, and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    5. Miranda, Matheus H.R. & Silva, Fabrício L. & Lourenço, Maria A.M. & Eckert, Jony J. & Silva, Ludmila C.A., 2022. "Electric vehicle powertrain and fuzzy controller optimization using a planar dynamics simulation based on a real-world driving cycle," Energy, Elsevier, vol. 238(PC).
    6. Wang, Weida & Guo, Xinghua & Yang, Chao & Zhang, Yuanbo & Zhao, Yulong & Huang, Denggao & Xiang, Changle, 2022. "A multi-objective optimization energy management strategy for power split HEV based on velocity prediction," Energy, Elsevier, vol. 238(PA).
    7. Guo, Lingxiong & Zhang, Xudong & Zou, Yuan & Han, Lijin & Du, Guodong & Guo, Ningyuan & Xiang, Changle, 2022. "Co-optimization strategy of unmanned hybrid electric tracked vehicle combining eco-driving and simultaneous energy management," Energy, Elsevier, vol. 246(C).
    8. Wei, Hongqian & Zhang, Nan & Liang, Jun & Ai, Qiang & Zhao, Wenqiang & Huang, Tianyi & Zhang, Youtong, 2022. "Deep reinforcement learning based direct torque control strategy for distributed drive electric vehicles considering active safety and energy saving performance," Energy, Elsevier, vol. 238(PB).
    9. Khoudir Kakouche & Adel Oubelaid & Smail Mezani & Djamila Rekioua & Toufik Rekioua, 2023. "Different Control Techniques of Permanent Magnet Synchronous Motor with Fuzzy Logic for Electric Vehicles: Analysis, Modelling, and Comparison," Energies, MDPI, vol. 16(7), pages 1-28, March.
    10. Ze Zhao & Lei Zhang & Jianyang Wu & Liang Gu & Shaohua Li, 2023. "Vertical-Longitudinal Coupling Effect Investigation and System Optimization for a Suspension-In-Wheel-Motor System in Electric Vehicle Applications," Sustainability, MDPI, vol. 15(5), pages 1-24, February.
    11. Zhenpo Wang & Changhui Qu & Lei Zhang & Jin Zhang & Wen Yu, 2018. "Integrated Sizing and Energy Management for Four-Wheel-Independently-Actuated Electric Vehicles Considering Realistic Constructed Driving Cycles," Energies, MDPI, vol. 11(7), pages 1-22, July.
    12. Rufei Hou & Li Zhai & Tianmin Sun, 2018. "Steering Stability Control for a Four Hub-Motor Independent-Drive Electric Vehicle with Varying Adhesion Coefficient," Energies, MDPI, vol. 11(9), pages 1-17, September.
    13. Gao, Kai & Luo, Pan & Xie, Jin & Chen, Bin & Wu, Yue & Du, Ronghua, 2023. "Energy management of plug-in hybrid electric vehicles based on speed prediction fused driving intention and LIDAR," Energy, Elsevier, vol. 284(C).
    14. Nie, Zifei & Farzaneh, Hooman, 2022. "Real-time dynamic predictive cruise control for enhancing eco-driving of electric vehicles, considering traffic constraints and signal phase and timing (SPaT) information, using artificial-neural-netw," Energy, Elsevier, vol. 241(C).
    15. Yang, Dongpo & Liu, Tong & Song, Dafeng & Zhang, Xuanming & Zeng, Xiaohua, 2023. "A real time multi-objective optimization Guided-MPC strategy for power-split hybrid electric bus based on velocity prediction," Energy, Elsevier, vol. 276(C).
    16. Zhenyuan Bai & Yufeng Lu & Yunxia Li, 2020. "Method of Improving Lateral Stability by Using Additional Yaw Moment of Semi-Trailer," Energies, MDPI, vol. 13(23), pages 1-23, November.
    17. Mingchun Liu & Feihong Gu & Yuanzhi Zhang, 2017. "Ride Comfort Optimization of In-Wheel-Motor Electric Vehicles with In-Wheel Vibration Absorbers," Energies, MDPI, vol. 10(10), pages 1-21, October.
    18. Liu, Yonggang & Huang, Bin & Yang, Yang & Lei, Zhenzhen & Zhang, Yuanjian & Chen, Zheng, 2022. "Hierarchical speed planning and energy management for autonomous plug-in hybrid electric vehicle in vehicle-following environment," Energy, Elsevier, vol. 260(C).
    19. Mohamed Derbeli & Cristian Napole & Oscar Barambones & Jesus Sanchez & Isidro Calvo & Pablo Fernández-Bustamante, 2021. "Maximum Power Point Tracking Techniques for Photovoltaic Panel: A Review and Experimental Applications," Energies, MDPI, vol. 14(22), pages 1-31, November.
    20. Vamsi Krishna Reddy, Aala Kalananda & Venkata Lakshmi Narayana, Komanapalli, 2022. "Meta-heuristics optimization in electric vehicles -an extensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5766-:d:634680. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.