IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p5125-d617668.html
   My bibliography  Save this article

Influence of a Winding Short-Circuit Fault on Demagnetization Risk and Local Magnetic Forces in V-Shaped Interior PMSM with Distributed and Concentrated Winding

Author

Listed:
  • Piotr Mynarek

    (Department of Automatic Control and Informatics, Faculty of Electrical Engineering, Opole University of Technology, 45-758 Opole, Poland)

  • Janusz Kołodziej

    (Department of Automatic Control and Informatics, Faculty of Electrical Engineering, Opole University of Technology, 45-758 Opole, Poland)

  • Adrian Młot

    (Department of Automatic Control and Informatics, Faculty of Electrical Engineering, Opole University of Technology, 45-758 Opole, Poland)

  • Marcin Kowol

    (Department of Automatic Control and Informatics, Faculty of Electrical Engineering, Opole University of Technology, 45-758 Opole, Poland)

  • Marian Łukaniszyn

    (Department of Automatic Control and Informatics, Faculty of Electrical Engineering, Opole University of Technology, 45-758 Opole, Poland)

Abstract

This paper presents a comparison of 30/8 and 12/8 AC permanent magnet motors with distributed (DW) and concentrated winding (CW) designed for electric vehicle traction. Both prototypes are based on an interior permanent magnet (IPM) motor topology and contain V-shape magnets. The radial flux AC IPM motors were designed for an 80 kW propulsion system to achieve 125 N·m. Finite element models (FEM) used to design the geometry of IPM motors and the required useful parameters of electric motors are widely investigated. The accuracy of finite element models is verified and validated on the basis of test data. Numerical simulations of healthy and faulty operation states, and studies of winding faults based on the FEM offer a deeper understanding of the associated phenomena. Therefore, in this paper, a short-circuit fault in a stator winding was simulated to investigate the transient currents under an external load collapse, for all winding phases. These simulations were used to define other important machine parameters to improve mechanical reliability of the motors and to assess the potential risk of permanent magnet (PM) demagnetization. Furthermore, the analysis of local magnetic forces affecting the PMs in the rotor and their possible displacement in a short-circuit situation were performed, also taking into account the centrifugal force. Lastly, it is demonstrated that the choice of winding configuration has a significant impact on the uncontrolled displacement of magnets in the rotor.

Suggested Citation

  • Piotr Mynarek & Janusz Kołodziej & Adrian Młot & Marcin Kowol & Marian Łukaniszyn, 2021. "Influence of a Winding Short-Circuit Fault on Demagnetization Risk and Local Magnetic Forces in V-Shaped Interior PMSM with Distributed and Concentrated Winding," Energies, MDPI, vol. 14(16), pages 1-16, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:5125-:d:617668
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/5125/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/5125/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Myeong-Hwan Hwang & Jong-Ho Han & Dong-Hyun Kim & Hyun-Rok Cha, 2018. "Design and Analysis of Rotor Shapes for IPM Motors in EV Power Traction Platforms," Energies, MDPI, vol. 11(10), pages 1-12, September.
    2. Mariusz Korkosz & Jan Prokop & Bartlomiej Pakla & Grzegorz Podskarbi & Piotr Bogusz, 2020. "Analysis of Open-Circuit Fault in Fault-Tolerant BLDC Motors with Different Winding Configurations," Energies, MDPI, vol. 13(20), pages 1-27, October.
    3. Mariusz Baranski & Wojciech Szelag & Wieslaw Lyskawinski, 2020. "Analysis of the Partial Demagnetization Process of Magnets in a Line Start Permanent Magnet Synchronous Motor," Energies, MDPI, vol. 13(21), pages 1-20, October.
    4. Zia Ullah & Jin Hur, 2018. "A Comprehensive Review of Winding Short Circuit Fault and Irreversible Demagnetization Fault Detection in PM Type Machines," Energies, MDPI, vol. 11(12), pages 1-27, November.
    5. Ping Zheng & Fan Wu & Yi Sui & Pengfei Wang & Yu Lei & Haipeng Wang, 2012. "Harmonic Analysis and Fault-Tolerant Capability of a Semi-12-Phase Permanent-Magnet Synchronous Machine Used for EVs," Energies, MDPI, vol. 5(9), pages 1-22, September.
    6. Kumar, Lalit & Jain, Shailendra, 2014. "Electric propulsion system for electric vehicular technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 924-940.
    7. Lien-Kai Chang & Shun-Hong Wang & Mi-Ching Tsai, 2020. "Demagnetization Fault Diagnosis of a PMSM Using Auto-Encoder and K-Means Clustering," Energies, MDPI, vol. 13(17), pages 1-12, August.
    8. Baodi Zhang & Fuyuan Yang & Lan Teng & Minggao Ouyang & Kunfang Guo & Weifeng Li & Jiuyu Du, 2019. "Comparative Analysis of Technical Route and Market Development for Light-Duty PHEV in China and the US," Energies, MDPI, vol. 12(19), pages 1-23, September.
    9. Caixia Gao & Yanjie Nie & Jikai Si & Ziyi Fu & Haichao Feng, 2019. "Mode Recognition and Fault Positioning of Permanent Magnet Demagnetization for PMSM," Energies, MDPI, vol. 12(9), pages 1-14, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlos Candelo-Zuluaga & Jordi-Roger Riba & Dinesh V. Thangamuthu & Antoni Garcia, 2020. "Detection of Partial Demagnetization Faults in Five-Phase Permanent Magnet Assisted Synchronous Reluctance Machines," Energies, MDPI, vol. 13(13), pages 1-17, July.
    2. Jing Tang & Yongheng Yang & Jie Chen & Ruichang Qiu & Zhigang Liu, 2019. "Characteristics Analysis and Measurement of Inverter-Fed Induction Motors for Stator and Rotor Fault Detection," Energies, MDPI, vol. 13(1), pages 1-17, December.
    3. Łukasz Knypiński & Karol Pawełoszek & Yvonnick Le Menach, 2020. "Optimization of Low-Power Line-Start PM Motor Using Gray Wolf Metaheuristic Algorithm," Energies, MDPI, vol. 13(5), pages 1-11, March.
    4. Wei, Ran & Liu, Xiaoyue & Ou, Yi & Kiavash Fayyaz, S., 2018. "Optimizing the spatio-temporal deployment of battery electric bus system," Journal of Transport Geography, Elsevier, vol. 68(C), pages 160-168.
    5. Eckert, Jony Javorski & Silva, Fabrício L. & da Silva, Samuel Filgueira & Bueno, André Valente & de Oliveira, Mona Lisa Moura & Silva, Ludmila C.A., 2022. "Optimal design and power management control of hybrid biofuel–electric powertrain," Applied Energy, Elsevier, vol. 325(C).
    6. Alexander Wahl & Christoph Wellmann & Björn Krautwig & Patrick Manns & Bicheng Chen & Christof Schernus & Jakob Andert, 2022. "Efficiency Increase through Model Predictive Thermal Control of Electric Vehicle Powertrains," Energies, MDPI, vol. 15(4), pages 1-21, February.
    7. Hicham El Hadraoui & Mourad Zegrari & Fatima-Ezzahra Hammouch & Nasr Guennouni & Oussama Laayati & Ahmed Chebak, 2022. "Design of a Customizable Test Bench of an Electric Vehicle Powertrain for Learning Purposes Using Model-Based System Engineering," Sustainability, MDPI, vol. 14(17), pages 1-22, September.
    8. Yin-Hui Lee & Min-Fu Hsieh, 2022. "Swiveling Magnetization for Anisotropic Magnets for Variable Flux Spoke-Type Permanent Magnet Motor Applied to Electric Vehicles," Energies, MDPI, vol. 15(10), pages 1-20, May.
    9. Mariusz Korkosz & Jan Prokop & Bartlomiej Pakla & Grzegorz Podskarbi & Piotr Bogusz, 2020. "Analysis of Open-Circuit Fault in Fault-Tolerant BLDC Motors with Different Winding Configurations," Energies, MDPI, vol. 13(20), pages 1-27, October.
    10. Alex Wray & Kambiz Ebrahimi, 2022. "Octovalve Thermal Management Control for Electric Vehicle," Energies, MDPI, vol. 15(17), pages 1-23, August.
    11. Wei, Changyin & Sun, Xiuxiu & Chen, Yong & Zang, Libin & Bai, Shujie, 2021. "Comparison of architecture and adaptive energy management strategy for plug-in hybrid electric logistics vehicle," Energy, Elsevier, vol. 230(C).
    12. Yinquan Yu & Haixi Gao & Qiping Chen & Peng Liu & Shuangxia Niu, 2022. "Demagnetization Fault Detection and Location in PMSM Based on Correlation Coefficient of Branch Current Signals," Energies, MDPI, vol. 15(8), pages 1-17, April.
    13. Chen, Tao & Cai, Liang & Wen, Xiantai & Zhang, Xiaosong, 2021. "Experimental research and energy consumption analysis on the economic performance of a hybrid-power gas engine heat pump with LiFePO4 battery," Energy, Elsevier, vol. 214(C).
    14. Roberto Capata, 2018. "Urban and Extra-Urban Hybrid Vehicles: A Technological Review," Energies, MDPI, vol. 11(11), pages 1-38, October.
    15. Riba, Jordi-Roger & López-Torres, Carlos & Romeral, Luís & Garcia, Antoni, 2016. "Rare-earth-free propulsion motors for electric vehicles: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 367-379.
    16. Minhyeok Lee & Yunkyung Hwang & Kwanghee Nam, 2021. "Torque Ripple Minimizing of Uniform Slot Machines with Delta Rotor via Subdomain Analysis," Energies, MDPI, vol. 14(21), pages 1-18, November.
    17. Yiguang Chen & Yukai Yang & Yonghuan Shen, 2018. "Influence of Small Teeth on Vibration for Dual-Redundancy Permanent Magnet Synchronous Motor," Energies, MDPI, vol. 11(9), pages 1-17, September.
    18. Jing Zhao & Xu Gao & Bin Li & Xiangdong Liu & Xing Guan, 2015. "Open-Phase Fault Tolerance Techniques of Five-Phase Dual-Rotor Permanent Magnet Synchronous Motor," Energies, MDPI, vol. 8(11), pages 1-29, November.
    19. M. Sabri, M.F. & Danapalasingam, K.A. & Rahmat, M.F., 2016. "A review on hybrid electric vehicles architecture and energy management strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1433-1442.
    20. He, Yinglong & Wang, Chongming & Zhou, Quan & Li, Ji & Makridis, Michail & Williams, Huw & Lu, Guoxiang & Xu, Hongming, 2020. "Multiobjective component sizing of a hybrid ethanol-electric vehicle propulsion system," Applied Energy, Elsevier, vol. 266(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:5125-:d:617668. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.