IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i13p3845-d582588.html
   My bibliography  Save this article

Sinusoidal Control of a Brushless DC Motor with Misalignment of Hall Sensors

Author

Listed:
  • Krzysztof Kolano

    (Faculty of Electric Drives and Machines, Lublin University of Technology, Nadbystrzycka 38a, 20-618 Lublin, Poland)

  • Bartosz Drzymała

    (Faculty of Electric Drives and Machines, Lublin University of Technology, Nadbystrzycka 38a, 20-618 Lublin, Poland)

  • Jakub Gęca

    (Doctoral School, Lublin University of Technology, Nadbystrzycka 38a, 20-618 Lublin, Poland)

Abstract

This article presents an estimation method of the BLDC rotor position with asymmetrically arranged Hall sensors. Position estimation is necessary to control the motor by methods other than block commutation. A sinusoidal control method was selected for the research, which significantly reduces torque ripples and acoustic noise and is quite simple to implement. Inaccurate performance of the elements determining the position of the BLDC motor rotor causes a large error in the position estimation and has a negative impact on the operation of the drive controlled in this way. Using the developed control algorithms, it is possible to correctly determine the mechanical position of the rotor even for multi-pole motors. The proposed method is relatively easy to implement and does not require modification of control systems, being limited to changes only in the software of such devices. The tests of the actual system clearly show the usefulness of such a control method and its effectiveness.

Suggested Citation

  • Krzysztof Kolano & Bartosz Drzymała & Jakub Gęca, 2021. "Sinusoidal Control of a Brushless DC Motor with Misalignment of Hall Sensors," Energies, MDPI, vol. 14(13), pages 1-13, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3845-:d:582588
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/13/3845/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/13/3845/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mariusz Korkosz & Jan Prokop & Bartlomiej Pakla & Grzegorz Podskarbi & Piotr Bogusz, 2020. "Analysis of Open-Circuit Fault in Fault-Tolerant BLDC Motors with Different Winding Configurations," Energies, MDPI, vol. 13(20), pages 1-27, October.
    2. Krzysztof Kolano, 2020. "Determining the Position of the Brushless DC Motor Rotor," Energies, MDPI, vol. 13(7), pages 1-9, April.
    3. Dimitrios A. Papathanasopoulos & Konstantinos N. Giannousakis & Evangelos S. Dermatas & Epaminondas D. Mitronikas, 2021. "Vibration Monitoring for Position Sensor Fault Diagnosis in Brushless DC Motor Drives," Energies, MDPI, vol. 14(8), pages 1-24, April.
    4. Sylwester Sobieraj & Grzegorz Sieklucki & Józef Gromba, 2021. "Relative Stability of Electrical into Mechanical Conversion with BLDC Motor-Cascade Control," Energies, MDPI, vol. 14(3), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying Zhou & Zuyu Wu & Yutong Wu, 2021. "Intelligent Permanent Magnet Motor-Based Servo Drive System Used for Automated Tuning of Piano," Energies, MDPI, vol. 14(20), pages 1-23, October.
    2. Krzysztof Kolano & Artur Jan Moradewicz & Bartosz Drzymała & Jakub Gęca, 2022. "Influence of the Placement Accuracy of the Brushless DC Motor Hall Sensor on Inverter Transistor Losses," Energies, MDPI, vol. 15(5), pages 1-13, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vadim Carev & Jan Roháč & Martin Šipoš & Michal Schmirler, 2021. "A Multilayer Brushless DC Motor for Heavy Lift Drones," Energies, MDPI, vol. 14(9), pages 1-19, April.
    2. Piotr Mynarek & Janusz Kołodziej & Adrian Młot & Marcin Kowol & Marian Łukaniszyn, 2021. "Influence of a Winding Short-Circuit Fault on Demagnetization Risk and Local Magnetic Forces in V-Shaped Interior PMSM with Distributed and Concentrated Winding," Energies, MDPI, vol. 14(16), pages 1-16, August.
    3. Karolina Kudelina & Bilal Asad & Toomas Vaimann & Anton Rassõlkin & Ants Kallaste & Huynh Van Khang, 2021. "Methods of Condition Monitoring and Fault Detection for Electrical Machines," Energies, MDPI, vol. 14(22), pages 1-20, November.
    4. Krzysztof Kolano & Artur Jan Moradewicz & Bartosz Drzymała & Jakub Gęca, 2022. "Influence of the Placement Accuracy of the Brushless DC Motor Hall Sensor on Inverter Transistor Losses," Energies, MDPI, vol. 15(5), pages 1-13, March.
    5. Fugang Zhai & Liu Yang & Wenqi Fu & Haisheng Tong & Tianyu Zhao, 2022. "The Effects of Permanent Magnet Segmentations on Electromagnetic Performance in Ironless Brushless DC Motors," Energies, MDPI, vol. 15(2), pages 1-18, January.
    6. Olga A. Filina & Nikita V. Martyushev & Boris V. Malozyomov & Vadim Sergeevich Tynchenko & Viktor Alekseevich Kukartsev & Kirill Aleksandrovich Bashmur & Pavel P. Pavlov & Tatyana Aleksandrovna Panfil, 2023. "Increasing the Efficiency of Diagnostics in the Brush-Commutator Assembly of a Direct Current Electric Motor," Energies, MDPI, vol. 17(1), pages 1-24, December.
    7. Siddique Akbar & Toomas Vaimann & Bilal Asad & Ants Kallaste & Muhammad Usman Sardar & Karolina Kudelina, 2023. "State-of-the-Art Techniques for Fault Diagnosis in Electrical Machines: Advancements and Future Directions," Energies, MDPI, vol. 16(17), pages 1-44, September.
    8. Jie Ma & Yingxue Li & Liying Wang & Jisheng Hu & Hua Li & Jiyou Fei & Lin Li & Geng Zhao, 2023. "Stator ITSC Fault Diagnosis for EMU Induction Traction Motor Based on Goertzel Algorithm and Random Forest," Energies, MDPI, vol. 16(13), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3845-:d:582588. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.