IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p5058-d616279.html
   My bibliography  Save this article

Electric Arc Furnaces as a Cause of Current and Voltage Asymmetry

Author

Listed:
  • Zbigniew Olczykowski

    (Faculty of Transport, Electrical Engineering and Computer Science, Kazimierz Pulaski University of Technology and Humanities, 26-600 Radom, Poland)

Abstract

In the case of three-phase arc furnaces, two types of asymmetry can be distinguished: constructional and operational. The structural asymmetry is related to the construction of high-current circuits supplying the arc furnace. The knowledge of the parameters of the high-current circuit allows to determine the operating characteristics of the arc device. The author proposed a method for calculating the real values of the resistance and reactance of the high-current circuit. For this purpose, tests were made to short-circuit the electrodes with the charge. During the short-circuit, with the use of a power quality analyzer, measurements of electrical indicators were carried out, which allow to determine the parameters of the high-current circuit. A new method for determining voltage operational unbalance is also presented in this paper. The theoretical considerations presented in the article were verified in industrial conditions.

Suggested Citation

  • Zbigniew Olczykowski, 2021. "Electric Arc Furnaces as a Cause of Current and Voltage Asymmetry," Energies, MDPI, vol. 14(16), pages 1-18, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:5058-:d:616279
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/5058/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/5058/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shunjiang Lin & Sen He & Haipeng Zhang & Mingbo Liu & Zhiqiang Tang & Hao Jiang & Yunong Song, 2019. "Robust Optimal Allocation of Decentralized Reactive Power Compensation in Three-Phase Four-Wire Low-Voltage Distribution Networks Considering the Uncertainty of Photovoltaic Generation," Energies, MDPI, vol. 12(13), pages 1-20, June.
    2. Zbigniew Olczykowski & Zbigniew Łukasik, 2021. "Evaluation of Flicker of Light Generated by Arc Furnaces," Energies, MDPI, vol. 14(13), pages 1-23, June.
    3. Boris Dumnic & Bane Popadic & Dragan Milicevic & Nikola Vukajlovic & Marko Delimar, 2019. "Control Strategy for a Grid Connected Converter in Active Unbalanced Distribution Systems," Energies, MDPI, vol. 12(7), pages 1-18, April.
    4. Dimitar Bozalakov & Mohannad J. Mnati & Joannes Laveyne & Jan Desmet & Lieven Vandevelde, 2019. "Battery Storage Integration in Voltage Unbalance and Overvoltage Mitigation Control Strategies and Its Impact on the Power Quality," Energies, MDPI, vol. 12(8), pages 1-26, April.
    5. Andrzej Grzegorz Lange & Grzegorz Redlarski, 2020. "Selection of C-Type Filters for Reactive Power Compensation and Filtration of Higher Harmonics Injected into the Transmission System by Arc Furnaces," Energies, MDPI, vol. 13(9), pages 1-19, May.
    6. Morsy Nour & José Pablo Chaves-Ávila & Gaber Magdy & Álvaro Sánchez-Miralles, 2020. "Review of Positive and Negative Impacts of Electric Vehicles Charging on Electric Power Systems," Energies, MDPI, vol. 13(18), pages 1-34, September.
    7. Lukas Held & Felicitas Mueller & Sina Steinle & Mohammed Barakat & Michael R. Suriyah & Thomas Leibfried, 2021. "An Optimal Power Flow Algorithm for the Simulation of Energy Storage Systems in Unbalanced Three-Phase Distribution Grids," Energies, MDPI, vol. 14(6), pages 1-34, March.
    8. Zbigniew Łukasik & Zbigniew Olczykowski, 2020. "Estimating the Impact of Arc Furnaces on the Quality of Power in Supply Systems," Energies, MDPI, vol. 13(6), pages 1-30, March.
    9. Ryuto Shigenobu & Akito Nakadomari & Ying-Yi Hong & Paras Mandal & Hiroshi Takahashi & Tomonobu Senjyu, 2020. "Optimization of Voltage Unbalance Compensation by Smart Inverter," Energies, MDPI, vol. 13(18), pages 1-22, September.
    10. Yunjun Yu & Zhongyang Wang & Xiaofeng Wan, 2019. "Optimal Current Balance Control of Three-Level Inverter under Grid Voltage Unbalance: An Adaptive Dynamic Programming Approach," Energies, MDPI, vol. 12(15), pages 1-20, July.
    11. Yuanyuan Sun & Peixin Li & Shurong Li & Linghan Zhang, 2017. "Contribution Determination for Multiple Unbalanced Sources at the Point of Common Coupling," Energies, MDPI, vol. 10(2), pages 1-17, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pegah Hamedani & Cristian Garcia & Jose Rodriguez, 2023. "A Comprehensive Evaluation of Different Power Quantities in DC Electric Arc Furnace Power Supplies," Energies, MDPI, vol. 16(9), pages 1-24, May.
    2. Andriy Lozynskyy & Jacek Kozyra & Zbigniew Łukasik & Aldona Kuśmińska-Fijałkowska & Andriy Kutsyk & Yaroslav Paranchuk & Lidiia Kasha, 2022. "A Mathematical Model of Electrical Arc Furnaces for Analysis of Electrical Mode Parameters and Synthesis of Controlling Influences," Energies, MDPI, vol. 15(5), pages 1-19, February.
    3. Jacek Kozyra & Andriy Lozynskyy & Zbigniew Łukasik & Aldona Kuśmińska-Fijałkowska & Andriy Kutsyk & Grzegorz Podskarbi & Yaroslav Paranchuk & Lidiia Kasha, 2022. "Combined Control System for the Coordinates of the Electric Mode in the Electrotechnological Complex “Arc Steel Furnace-Power-Supply Network”," Energies, MDPI, vol. 15(14), pages 1-21, July.
    4. Yaroslav Paranchuk & Daniel Jancarczyk & Pawel Falat, 2023. "Study and Analysis of Dynamics and Energy Efficiency of Arc Steelmaking Furnace Electrical Mode with a Fuzzy Control Algorithm," Energies, MDPI, vol. 16(8), pages 1-19, April.
    5. Zbigniew Olczykowski, 2022. "Arc Voltage Distortion as a Source of Higher Harmonics Generated by Electric Arc Furnaces," Energies, MDPI, vol. 15(10), pages 1-23, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zbigniew Olczykowski, 2022. "Arc Voltage Distortion as a Source of Higher Harmonics Generated by Electric Arc Furnaces," Energies, MDPI, vol. 15(10), pages 1-23, May.
    2. Zbigniew Olczykowski & Zbigniew Łukasik, 2021. "Evaluation of Flicker of Light Generated by Arc Furnaces," Energies, MDPI, vol. 14(13), pages 1-23, June.
    3. Daisuke Iioka & Takahiro Fujii & Toshio Tanaka & Tsuyoshi Harimoto & Junpei Motoyama & Daisuke Nagae, 2021. "Improvement of Voltage Unbalance by Current Injection Based on Unbalanced Line Impedance in Distribution Network with PV System," Energies, MDPI, vol. 14(23), pages 1-16, December.
    4. Pegah Hamedani & Cristian Garcia & Jose Rodriguez, 2023. "A Comprehensive Evaluation of Different Power Quantities in DC Electric Arc Furnace Power Supplies," Energies, MDPI, vol. 16(9), pages 1-24, May.
    5. Sander Claeys & Marta Vanin & Frederik Geth & Geert Deconinck, 2021. "Applications of optimization models for electricity distribution networks," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(5), September.
    6. Tom Elliott & Joachim Geske & Richard Green, 2022. "Business Models for Active Buildings," Energies, MDPI, vol. 15(19), pages 1-17, October.
    7. Ryszard Klempka, 2021. "An Arc Furnace as a Source of Voltage Disturbances—A Statistical Evaluation of Propagation in the Supply Network," Energies, MDPI, vol. 14(4), pages 1-14, February.
    8. Moshammed Nishat Tasnim & Tofael Ahmed & Monjila Afrin Dorothi & Shameem Ahmad & G. M. Shafiullah & S. M. Ferdous & Saad Mekhilef, 2023. "Voltage-Oriented Control-Based Three-Phase, Three-Leg Bidirectional AC–DC Converter with Improved Power Quality for Microgrids," Energies, MDPI, vol. 16(17), pages 1-32, August.
    9. Abubakr, Hussein & Lashab, Abderezak & Vasquez, Juan C. & Mohamed, Tarek Hassan & Guerrero, Josep M., 2023. "Novel V2G regulation scheme using Dual-PSS for PV islanded microgrid," Applied Energy, Elsevier, vol. 340(C).
    10. Bharath Varsh Rao & Mark Stefan & Roman Schwalbe & Roman Karl & Friederich Kupzog & Martin Kozek, 2021. "Stratified Control Applied to a Three-Phase Unbalanced Low Voltage Distribution Grid in a Local Peer-to-Peer Energy Community," Energies, MDPI, vol. 14(11), pages 1-19, June.
    11. Alena Otcenasova & Roman Bodnar & Michal Regula & Marek Hoger & Michal Repak, 2017. "Methodology for Determination of the Number of Equipment Malfunctions Due to Voltage Sags," Energies, MDPI, vol. 10(3), pages 1-26, March.
    12. Akito Nakadomari & Ryuto Shigenobu & Takeyoshi Kato & Narayanan Krishnan & Ashraf Mohamed Hemeida & Hiroshi Takahashi & Tomonobu Senjyu, 2021. "Unbalanced Voltage Compensation with Optimal Voltage Controlled Regulators and Load Ratio Control Transformer," Energies, MDPI, vol. 14(11), pages 1-18, May.
    13. Despoina Kothona & Aggelos S. Bouhouras, 2022. "A Two-Stage EV Charging Planning and Network Reconfiguration Methodology towards Power Loss Minimization in Low and Medium Voltage Distribution Networks," Energies, MDPI, vol. 15(10), pages 1-17, May.
    14. Siavash Asiaban & Nezmin Kayedpour & Arash E. Samani & Dimitar Bozalakov & Jeroen D. M. De Kooning & Guillaume Crevecoeur & Lieven Vandevelde, 2021. "Wind and Solar Intermittency and the Associated Integration Challenges: A Comprehensive Review Including the Status in the Belgian Power System," Energies, MDPI, vol. 14(9), pages 1-41, May.
    15. Saša Vlahinić & Dubravko Franković & Vitomir Komen & Anamarija Antonić, 2019. "Reactive Power Compensation with PV Inverters for System Loss Reduction," Energies, MDPI, vol. 12(21), pages 1-17, October.
    16. Mohammad Alathamneh & Haneen Ghanayem & Xingyu Yang & R. M. Nelms, 2022. "Three-Phase Grid-Connected Inverter Power Control under Unbalanced Grid Conditions Using a Time-Domain Symmetrical Components Extraction Method," Energies, MDPI, vol. 15(19), pages 1-16, September.
    17. Sanchari Deb & Xiao-Zhi Gao, 2022. "Prediction of Charging Demand of Electric City Buses of Helsinki, Finland by Random Forest," Energies, MDPI, vol. 15(10), pages 1-18, May.
    18. Muhammad Shahab & Shaorong Wang & Abdul Khalique Junejo, 2021. "Improved Control Strategy for Three-Phase Microgrid Management with Electric Vehicles Using Multi Objective Optimization Algorithm," Energies, MDPI, vol. 14(4), pages 1-23, February.
    19. Vladislav Akhmatov & Bjarne Søndergaard Bukh & Chris Liberty Skovgaard & Bjarne Christian Gellert, 2023. "Novel Harmonic Distortion Prediction Methods for Meshed Transmission Grids with Large Amount of Underground Cables," Energies, MDPI, vol. 16(9), pages 1-39, May.
    20. Junyong Wu & Chen Shi & Meiyang Shao & Ran An & Xiaowen Zhu & Xing Huang & Rong Cai, 2019. "Reactive Power Optimization of a Distribution System Based on Scene Matching and Deep Belief Network," Energies, MDPI, vol. 12(17), pages 1-24, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:5058-:d:616279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.