IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p4996-d614445.html
   My bibliography  Save this article

Portable Mobile Gait Monitor System Based on Triboelectric Nanogenerator for Monitoring Gait and Powering Electronics

Author

Listed:
  • Yupeng Mao

    (Physical Education Department, Northeastern University, Shenyang 110819, China)

  • Yongsheng Zhu

    (Physical Education Department, Northeastern University, Shenyang 110819, China)

  • Tianming Zhao

    (College of Sciences, Northeastern University, Shenyang 110819, China)

  • Changjun Jia

    (Physical Education Department, Northeastern University, Shenyang 110819, China)

  • Xiao Wang

    (College of Physical Education, Chongqing University, Chongqing 400030, China)

  • Qi Wang

    (College of Sciences, Northeastern University, Shenyang 110819, China)

Abstract

A self-powered portable triboelectric nanogenerator (TENG) is used to collect biomechanical energy and monitor the human motion, which is the new development trend in portable devices. We have developed a self-powered portable triboelectric nanogenerator, which is used in human motion energy collection and monitoring mobile gait and stability capability. The materials involved are common PTFE and aluminum foil, acting as a frictional layer, which can output electrical signals based on the triboelectric effect. Moreover, 3D printing technology is used to build the optimized structure of the nanogenerator, which has significantly improved its performance. TENG is conveniently integrated with commercial sport shoes, monitoring the gait and stability of multiple human motions, being strategically placed at the immediate point of motion during the respective process. The presented equipment uses a low-frequency stabilized voltage output system to provide power for the wearable miniature electronic device, while stabilizing the voltage output, in order to effectively prevent voltage overload. The interdisciplinary research has provided more application prospects for nanogenerators regarding self-powered module device integration.

Suggested Citation

  • Yupeng Mao & Yongsheng Zhu & Tianming Zhao & Changjun Jia & Xiao Wang & Qi Wang, 2021. "Portable Mobile Gait Monitor System Based on Triboelectric Nanogenerator for Monitoring Gait and Powering Electronics," Energies, MDPI, vol. 14(16), pages 1-12, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4996-:d:614445
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/4996/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/4996/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wenlin Liu & Zhao Wang & Gao Wang & Guanlin Liu & Jie Chen & Xianjie Pu & Yi Xi & Xue Wang & Hengyu Guo & Chenguo Hu & Zhong Lin Wang, 2019. "Integrated charge excitation triboelectric nanogenerator," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    2. Dae Sol Kong & Jae Yeon Han & Young Joon Ko & Sang Hyeok Park & Minbaek Lee & Jong Hoon Jung, 2021. "A Highly Efficient and Durable Kirigami Triboelectric Nanogenerator for Rotational Energy Harvesting," Energies, MDPI, vol. 14(4), pages 1-10, February.
    3. Jun Chen & Yi Huang & Nannan Zhang & Haiyang Zou & Ruiyuan Liu & Changyuan Tao & Xing Fan & Zhong Lin Wang, 2016. "Micro-cable structured textile for simultaneously harvesting solar and mechanical energy," Nature Energy, Nature, vol. 1(10), pages 1-8, October.
    4. Hu Shi & Zhaoying Liu & Xuesong Mei, 2019. "Overview of Human Walking Induced Energy Harvesting Technologies and Its Possibility for Walking Robotics," Energies, MDPI, vol. 13(1), pages 1-22, December.
    5. Chaoyu Chen & Lei Zhang & Wenbo Ding & Lijun Chen & Jinkang Liu & Zhaoqun Du & Weidong Yu, 2020. "Woven Fabric Triboelectric Nanogenerator for Biomotion Energy Harvesting and as Self-Powered Gait-Recognizing Socks," Energies, MDPI, vol. 13(16), pages 1-10, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Changjun Jia & Yongsheng Zhu & Fengxin Sun & Yuzhang Wen & Qi Wang & Ying Li & Yupeng Mao & Chongle Zhao, 2022. "Gas-Supported Triboelectric Nanogenerator Based on In Situ Gap-Generation Method for Biomechanical Energy Harvesting and Wearable Motion Monitoring," Sustainability, MDPI, vol. 14(21), pages 1-13, November.
    2. Yongsheng Zhu & Fengxin Sun & Changjun Jia & Chaorui Huang & Kuo Wang & Ying Li & Liping Chou & Yupeng Mao, 2022. "A 3D Printing Triboelectric Sensor for Gait Analysis and Virtual Control Based on Human–Computer Interaction and the Internet of Things," Sustainability, MDPI, vol. 14(17), pages 1-12, August.
    3. Nitin Satpute & Marek Iwaniec & Joanna Iwaniec & Manisha Mhetre & Swapnil Arawade & Siddharth Jabade & Marian Banaś, 2023. "Triboelectric Nanogenerator-Based Vibration Energy Harvester Using Bio-Inspired Microparticles and Mechanical Motion Amplification," Energies, MDPI, vol. 16(3), pages 1-22, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yanhong & Guo, Ziting & Zhao, Zhihao & Gao, Yikui & Yang, Peiyuan & Qiao, Wenyan & Zhou, Linglin & Wang, Jie & Wang, Zhong Lin, 2023. "Multi-layered triboelectric nanogenerator incorporated with self-charge excitation for efficient water wave energy harvesting," Applied Energy, Elsevier, vol. 336(C).
    2. Wang, Yingli & Duan, Jialong & Zhao, Yuanyuan & He, Benlin & Tang, Qunwei, 2018. "Harvest rain energy by polyaniline-graphene composite films," Renewable Energy, Elsevier, vol. 125(C), pages 995-1002.
    3. Tan, Qinxue & Fan, Kangqi & Tao, Kai & Zhao, Liya & Cai, Meiling, 2020. "A two-degree-of-freedom string-driven rotor for efficient energy harvesting from ultra-low frequency excitations," Energy, Elsevier, vol. 196(C).
    4. Jiang, Dongyue & Xu, Minyi & Dong, Ming & Guo, Fei & Liu, Xiaohua & Chen, Guijun & Wang, Zhong Lin, 2019. "Water-solid triboelectric nanogenerators: An alternative means for harvesting hydropower," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    5. Devadiga, Dheeraj & Selvakumar, Muthu & Shetty, Prakasha & Santosh, Mysore Sridhar, 2022. "The integration of flexible dye-sensitized solar cells and storage devices towards wearable self-charging power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    6. Ali Matin Nazar & King-James Idala Egbe & Azam Abdollahi & Mohammad Amin Hariri-Ardebili, 2021. "Triboelectric Nanogenerators for Energy Harvesting in Ocean: A Review on Application and Hybridization," Energies, MDPI, vol. 14(18), pages 1-33, September.
    7. Mahmoud Wagih & Abiodun Komolafe & Bahareh Zaghari, 2020. "Separation-Independent Wearable 6.78 MHz Near-Field Radiative Wireless Power Transfer using Electrically Small Embroidered Textile Coils," Energies, MDPI, vol. 13(3), pages 1-14, January.
    8. Caterina Russo & Mirco Lo Monaco & Federico Fraccarollo & Aurelio Somà, 2021. "Experimental and Numerical Characterization of a Gravitational Electromagnetic Energy Harvester," Energies, MDPI, vol. 14(15), pages 1-19, July.
    9. Jiatong Chen & Bin Bao & Jinlong Liu & Yufei Wu & Quan Wang, 2022. "Pendulum Energy Harvesters: A Review," Energies, MDPI, vol. 15(22), pages 1-26, November.
    10. Zhuo Wang & Xinyu Wu & Yu Zhang & Youfu Liu & Yida Liu & Wujing Cao & Chunjie Chen, 2020. "A New Portable Energy Harvesting Device Mounted on Shoes: Performance and Impact on Wearer," Energies, MDPI, vol. 13(15), pages 1-14, July.
    11. Dae Sol Kong & Jae Yeon Han & Young Joon Ko & Sang Hyeok Park & Minbaek Lee & Jong Hoon Jung, 2021. "A Highly Efficient and Durable Kirigami Triboelectric Nanogenerator for Rotational Energy Harvesting," Energies, MDPI, vol. 14(4), pages 1-10, February.
    12. Rahate Ahmed & Yeongmin Kim & Zeeshan & Wongee Chun, 2019. "Development of a Tree-Shaped Hybrid Nanogenerator Using Flexible Sheets of Photovoltaic and Piezoelectric Films," Energies, MDPI, vol. 12(2), pages 1-10, January.
    13. Xun Zhao & Yihao Zhou & Jing Xu & Guorui Chen & Yunsheng Fang & Trinny Tat & Xiao Xiao & Yang Song & Song Li & Jun Chen, 2021. "Soft fibers with magnetoelasticity for wearable electronics," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    14. Liu, Huicong & Fu, Hailing & Sun, Lining & Lee, Chengkuo & Yeatman, Eric M., 2021. "Hybrid energy harvesting technology: From materials, structural design, system integration to applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    15. Ludwin Molina Arias & Joanna Iwaniec & Marek Iwaniec, 2021. "Modeling and Analysis of the Power Conditioning Circuit for an Electromagnetic Human Walking-Induced Energy Harvester," Energies, MDPI, vol. 14(12), pages 1-24, June.
    16. Massimo Mariello & Elisa Scarpa & Luciana Algieri & Francesco Guido & Vincenzo Mariano Mastronardi & Antonio Qualtieri & Massimo De Vittorio, 2020. "Novel Flexible Triboelectric Nanogenerator based on Metallized Porous PDMS and Parylene C," Energies, MDPI, vol. 13(7), pages 1-12, April.
    17. Zhao, Chaoyang & Yang, Yaowen & Upadrashta, Deepesh & Zhao, Liya, 2021. "Design, modeling and experimental validation of a low-frequency cantilever triboelectric energy harvester," Energy, Elsevier, vol. 214(C).
    18. Nadia Yusuf & Mostafa F. Fawzy, 2023. "From Gym to Grid: Evaluating the Impact of COVID-19 on Saudi Gym-Goers’ Willingness to Utilize Human Kinetic Energy for Sustainable Energy Generation," Sustainability, MDPI, vol. 15(13), pages 1-19, June.
    19. Caixia Li & Yongsheng Zhu & Fengxin Sun & Changjun Jia & Tianming Zhao & Yupeng Mao & Haidong Yang, 2022. "Research Progress on Triboelectric Nanogenerator for Sports Applications," Energies, MDPI, vol. 15(16), pages 1-15, August.
    20. Hao, Daning & Qi, Lingfei & Tairab, Alaeldin M. & Ahmed, Ammar & Azam, Ali & Luo, Dabing & Pan, Yajia & Zhang, Zutao & Yan, Jinyue, 2022. "Solar energy harvesting technologies for PV self-powered applications: A comprehensive review," Renewable Energy, Elsevier, vol. 188(C), pages 678-697.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4996-:d:614445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.