IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p4845-d610981.html
   My bibliography  Save this article

Gas Engine-Driven Heat Pumps for Small-Scale Applications: State-of-the-Art and Future Perspectives

Author

Listed:
  • Carlo Roselli

    (DING, Department of Engineering, University of Sannio, 82100 Benevento, Italy)

  • Elisa Marrasso

    (DING, Department of Engineering, University of Sannio, 82100 Benevento, Italy)

  • Maurizio Sasso

    (DING, Department of Engineering, University of Sannio, 82100 Benevento, Italy)

Abstract

Gas engine-driven heat pumps are an interesting option to satisfy space heating and cooling demands aiming at energy saving, environmental impact and operating costs’ reduction. This work presents (i) a comprehensive review updated on gas engine-driven heat pumps research activities, (ii) the investigation of the central role of this technology in the air conditioning sector and (iii) the future perspectives regarding gas engine heat pumps’ diffusion in the context of the energy sector decarbonisation. The outcomes highlight that gas engine heat pumps could have better environmental performance compared to electric heat pumps both in heating and cooling operations. Moreover, they could play a pivotal role in the fight against climate change and energy security since they can guarantee an energy mix differentiation moving from electricity to natural gas and renewable gases’ usage. Indeed, by 2030, a lower-carbon gas grid could be supported by renewable gases. A further investigation has concerned diffusion of gas heat pumps activated from biofuels produced by local biomass in an energy community scenario based on a low-temperature energy district network. A novel biomass-based GEHP interacting with a low-temperature district heating network is proposed here. This system could save more than 30% of primary energy compared to biomass-fuelled boilers.

Suggested Citation

  • Carlo Roselli & Elisa Marrasso & Maurizio Sasso, 2021. "Gas Engine-Driven Heat Pumps for Small-Scale Applications: State-of-the-Art and Future Perspectives," Energies, MDPI, vol. 14(16), pages 1-73, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4845-:d:610981
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/4845/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/4845/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xu, Zhenjun & Wu, Huaizhi & Wu, Meiling, 2010. "Energy performance and consumption for biogas heat pump air conditioner," Energy, Elsevier, vol. 35(12), pages 5497-5502.
    2. Hepbasli, Arif & Erbay, Zafer & Icier, Filiz & Colak, Neslihan & Hancioglu, Ebru, 2009. "A review of gas engine driven heat pumps (GEHPs) for residential and industrial applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 85-99, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Peng & Wang, Lin-Shu & Schwartz, Paul & Hofbauer, Peter, 2020. "State-wide comparative analysis of the cost saving potential of Vuilleumier heat pumps in residential houses," Applied Energy, Elsevier, vol. 277(C).
    2. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part A: Modeling and modifications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 90-123.
    3. Jolando M. Kisse & Martin Braun & Simon Letzgus & Tanja M. Kneiske, 2020. "A GIS-Based Planning Approach for Urban Power and Natural Gas Distribution Grids with Different Heat Pump Scenarios," Energies, MDPI, vol. 13(16), pages 1-31, August.
    4. Gazda, Wiesław & Kozioł, Joachim, 2013. "The estimation of energy efficiency for hybrid refrigeration system," Applied Energy, Elsevier, vol. 101(C), pages 49-57.
    5. Fabrizio, Enrico & Seguro, Federico & Filippi, Marco, 2014. "Integrated HVAC and DHW production systems for Zero Energy Buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 515-541.
    6. Zhang, Zijun & Zeng, Yaohui & Kusiak, Andrew, 2012. "Minimizing pump energy in a wastewater processing plant," Energy, Elsevier, vol. 47(1), pages 505-514.
    7. Lee, Woo-Nam & Kim, Hyeong-Jung & Park, Jong-Bae & Cho, Ki-Seon & Roh, Jae Hyung & Son, Sung-Yong, 2012. "Economic analysis of heating and cooling systems from the various perspectives: Application to EHP and GHP in Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4116-4125.
    8. Gungor, Aysegul & Erbay, Zafer & Hepbasli, Arif, 2011. "Exergetic analysis and evaluation of a new application of gas engine heat pumps (GEHPs) for food drying processes," Applied Energy, Elsevier, vol. 88(3), pages 882-891, March.
    9. Bartosz Pawela & Marek Jaszczur, 2022. "Review of Gas Engine Heat Pumps," Energies, MDPI, vol. 15(13), pages 1-16, July.
    10. Sanaye, Sepehr & Chahartaghi, Mahmood & Asgari, Hesam, 2013. "Dynamic modeling of Gas Engine driven Heat Pump system in cooling mode," Energy, Elsevier, vol. 55(C), pages 195-208.
    11. Gungor, Aysegul & Erbay, Zafer & Hepbasli, Arif, 2011. "Exergoeconomic analyses of a gas engine driven heat pump drier and food drying process," Applied Energy, Elsevier, vol. 88(8), pages 2677-2684, August.
    12. Singh, A.K. & Singh, R.G. & Tiwari, G.N., 2020. "Thermal and electrical performance evaluation of photo-voltaic thermal compound parabolic concentrator integrated fixed dome biogas plant," Renewable Energy, Elsevier, vol. 154(C), pages 614-624.
    13. Noor Muhammad Abd Rahman & Lim Chin Haw & Ahmad Fazlizan, 2021. "A Literature Review of Naturally Ventilated Public Hospital Wards in Tropical Climate Countries for Thermal Comfort and Energy Saving Improvements," Energies, MDPI, vol. 14(2), pages 1-22, January.
    14. Dong, Feiqing & Lu, Jianbo, 2013. "Using solar energy to enhance biogas production from livestock residue – A case study of the Tongren biogas engineering pig farm in South China," Energy, Elsevier, vol. 57(C), pages 759-765.
    15. Kang, Shushuo & Li, Hongqiang & Lei, Jing & Liu, Lifang & Cai, Bo & Zhang, Guoqiang, 2015. "A new utilization approach of the waste heat with mid-low temperature in the combined heating and power system integrating heat pump," Applied Energy, Elsevier, vol. 160(C), pages 185-193.
    16. Yang, Zhao & Cheng, Heng & Wu, Xi & Chen, Yiguang, 2011. "Research on improving energy efficiency and the annual distributing structure in electricity and gas consumption by extending use of GEHP," Energy Policy, Elsevier, vol. 39(9), pages 5192-5202, September.
    17. Ximei Li & Jianmin Gao & Yaning Zhang & Yu Zhang & Qian Du & Shaohua Wu & Yukun Qin, 2020. "Energy, Exergy and Economic Analyses of a Combined Heating and Power System with Turbine-Driving Fans and Pumps in Northeast China," Energies, MDPI, vol. 13(4), pages 1-22, February.
    18. Sanaye, Sepehr & Chahartaghi, Mahmood, 2010. "Thermal modeling and operating tests for the gas engine-driven heat pump systems," Energy, Elsevier, vol. 35(1), pages 351-363.
    19. Yilmaz, Saban & Binici, Hanifi & Ozcalik, Hasan Riza, 2016. "Energy supply in a green school via a photovoltaic-thermal power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 713-720.
    20. Harby, K. & Gebaly, Doaa R. & Koura, Nader S. & Hassan, Mohamed S., 2016. "Performance improvement of vapor compression cooling systems using evaporative condenser: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 347-360.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4845-:d:610981. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.