IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p4756-d608861.html
   My bibliography  Save this article

Augmented Power Dispatch for Resilient Operation through Controllable Series Compensation and N-1-1 Contingency Assessment

Author

Listed:
  • Liping Huang

    (Department of Electrical Engineering, School of Automation, Guangdong University of Technology, Guangzhou 510006, China)

  • Zhaoxiong Huang

    (Department of Electrical Engineering, School of Automation, Guangdong University of Technology, Guangzhou 510006, China)

  • Chun Sing Lai

    (Department of Electrical Engineering, School of Automation, Guangdong University of Technology, Guangzhou 510006, China
    Brunel Interdisciplinary Power Systems Research Centre, Department of Electronic and Electrical Engineering, Brunel University London, London UB8 3PH, UK)

  • Guangya Yang

    (Center for Electric Power and Energy, Department of Electrical Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark)

  • Zhuoli Zhao

    (Department of Electrical Engineering, School of Automation, Guangdong University of Technology, Guangzhou 510006, China)

  • Ning Tong

    (Department of Electrical Engineering, School of Automation, Guangdong University of Technology, Guangzhou 510006, China)

  • Xiaomei Wu

    (Department of Electrical Engineering, School of Automation, Guangdong University of Technology, Guangzhou 510006, China)

  • Loi Lei Lai

    (Department of Electrical Engineering, School of Automation, Guangdong University of Technology, Guangzhou 510006, China)

Abstract

Research on enhancing power system resilience against extreme events is attracting significant attention and becoming a top global agenda. In this paper, a preventive augmented power dispatch model is proposed to provide a resilient operation. In the proposed model, a new N-1-1 security criterion is proposed to select disruptive N-1-1 contingency cases that might trigger cascading blackouts, and an iterative contingency assessment process based on the line outage distribution factor is proposed to deal with security constraints. In terms of optimization objectives, two objectives related to power flow on the transmission line are considered to reduce the possibility of overload outages. Controllable series compensation devices are also considered in the model to improve the power flow distribution. Case studies conducted on the modified IEEE 30-bus, 118-bus and Polish 2382-bus systems show that the power flow solution of the proposed power dispatch model can avoid some branches from undertaking excessively heavy loads, especially lines forecasted to be affected by extreme events. The results of blackout simulations through a hidden failure cascading outage simulation model show that the average power losses of the proposed model are reduced by around 40% in some cases as compared to the classical economic dispatch model.

Suggested Citation

  • Liping Huang & Zhaoxiong Huang & Chun Sing Lai & Guangya Yang & Zhuoli Zhao & Ning Tong & Xiaomei Wu & Loi Lei Lai, 2021. "Augmented Power Dispatch for Resilient Operation through Controllable Series Compensation and N-1-1 Contingency Assessment," Energies, MDPI, vol. 14(16), pages 1-24, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4756-:d:608861
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/4756/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/4756/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Antonio Pepiciello & Alfredo Vaccaro & Loi Lei Lai, 2020. "An Interval Mathematic-Based Methodology for Reliable Resilience Analysis of Power Systems in the Presence of Data Uncertainties," Energies, MDPI, vol. 13(24), pages 1-14, December.
    2. Jufri, Fauzan Hanif & Widiputra, Victor & Jung, Jaesung, 2019. "State-of-the-art review on power grid resilience to extreme weather events: Definitions, frameworks, quantitative assessment methodologies, and enhancement strategies," Applied Energy, Elsevier, vol. 239(C), pages 1049-1065.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin-Li Hu, 2022. "Energy Resilience in Presence of Natural and Social Uncertainties," Energies, MDPI, vol. 15(18), pages 1-3, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Min Gyung & Pavlak, Gregory S., 2023. "Risk-aware sizing and transactive control of building portfolios with thermal energy storage," Applied Energy, Elsevier, vol. 332(C).
    2. Yao He & Yongchun Yang & Meimei Wang & Xudong Zhang, 2022. "Resilience Analysis of Container Port Shipping Network Structure: The Case of China," Sustainability, MDPI, vol. 14(15), pages 1-17, August.
    3. Sang-Guk Yum & Kiyoung Son & Seunghyun Son & Ji-Myong Kim, 2020. "Identifying Risk Indicators for Natural Hazard-Related Power Outages as a Component of Risk Assessment: An Analysis Using Power Outage Data from Hurricane Irma," Sustainability, MDPI, vol. 12(18), pages 1-15, September.
    4. Popović, Željko N. & KovaÄ ki, Neven V. & Popović, Dragan S., 2020. "Resilient distribution network planning under the severe windstorms using a risk-based approach," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    5. Chen, Lei & Jiang, Yuqi & Zheng, Shencong & Deng, Xinyi & Chen, Hongkun & Islam, Md. Rabiul, 2023. "A two-layer optimal configuration approach of energy storage systems for resilience enhancement of active distribution networks," Applied Energy, Elsevier, vol. 350(C).
    6. Khalilullah Mayar & David G. Carmichael & Xuesong Shen, 2022. "Resilience and Systems—A Review," Sustainability, MDPI, vol. 14(14), pages 1-22, July.
    7. Younesi, Abdollah & Shayeghi, Hossein & Safari, Amin & Siano, Pierluigi, 2020. "Assessing the resilience of multi microgrid based widespread power systems against natural disasters using Monte Carlo Simulation," Energy, Elsevier, vol. 207(C).
    8. Banghua Xie & Changfan Li & Zili Wu & Weiming Chen, 2021. "Topological Modeling Research on the Functional Vulnerability of Power Grid under Extreme Weather," Energies, MDPI, vol. 14(16), pages 1-27, August.
    9. Emenike, Scholastica N. & Falcone, Gioia, 2020. "A review on energy supply chain resilience through optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    10. Hou, Hui & Tang, Junyi & Zhang, Zhiwei & Wang, Zhuo & Wei, Ruizeng & Wang, Lei & He, Huan & Wu, Xixiu, 2023. "Resilience enhancement of distribution network under typhoon disaster based on two-stage stochastic programming," Applied Energy, Elsevier, vol. 338(C).
    11. Rocchetta, Roberto, 2022. "Enhancing the resilience of critical infrastructures: Statistical analysis of power grid spectral clustering and post-contingency vulnerability metrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    12. Wu, Raphael & Sansavini, Giovanni, 2021. "Energy trilemma in active distribution network design: Balancing affordability, sustainability and security in optimization-based decision-making," Applied Energy, Elsevier, vol. 304(C).
    13. Linas Martišauskas & Juozas Augutis & Ričardas Krikštolaitis & Rolandas Urbonas & Inga Šarūnienė & Vytis Kopustinskas, 2022. "A Framework to Assess the Resilience of Energy Systems Based on Quantitative Indicators," Energies, MDPI, vol. 15(11), pages 1-25, May.
    14. Cesar A. Vega Penagos & Jan L. Diaz & Omar F. Rodriguez-Martinez & Fabio Andrade & Adriana C. Luna, 2023. "Metrics and Strategies Used in Power Grid Resilience," Energies, MDPI, vol. 17(1), pages 1-16, December.
    15. Wang, Han & Hou, Kai & Zhao, Junbo & Yu, Xiaodan & Jia, Hongjie & Mu, Yunfei, 2022. "Planning-Oriented resilience assessment and enhancement of integrated electricity-gas system considering multi-type natural disasters," Applied Energy, Elsevier, vol. 315(C).
    16. Sun, Qirun & Wu, Zhi & Ma, Zhoujun & Gu, Wei & Zhang, Xiao-Ping & Lu, Yuping & Liu, Pengxiang, 2022. "Resilience enhancement strategy for multi-energy systems considering multi-stage recovery process and multi-energy coordination," Energy, Elsevier, vol. 241(C).
    17. Youba Nait Belaid & Patrick Coudray & José Sanchez-Torres & Yi-Ping Fang & Zhiguo Zeng & Anne Barros, 2021. "Resilience Quantification of Smart Distribution Networks—A Bird’s Eye View Perspective," Energies, MDPI, vol. 14(10), pages 1-29, May.
    18. Gonçalves, Ana & Marques, Margarida Correia & Loureiro, Sílvia & Nieto, Raquel & Liberato, Margarida L.R., 2023. "Disruption risk analysis of the overhead power lines in Portugal," Energy, Elsevier, vol. 263(PA).
    19. Zhang, Xi & Tu, Haicheng & Guo, Jianbo & Ma, Shicong & Li, Zhen & Xia, Yongxiang & Tse, Chi Kong, 2021. "Braess paradox and double-loop optimization method to enhance power grid resilience," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    20. Yanqi Xie & Shuifa Ke & Xiaojing Li, 2023. "Psychological Resilience and Farmers’ Homestead Withdrawal: Evidence from Traditional Agricultural Regions in China," Agriculture, MDPI, vol. 13(5), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4756-:d:608861. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.