IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i15p4713-d607767.html
   My bibliography  Save this article

Calculation of the Shading Factors for Solar Modules with MATLAB

Author

Listed:
  • Martín Silva

    (Research and Development Group on Geotechnologies and Energy, Engineering Faculty, National University of Mar del Plata (UNMdP), Av. Juan B. Justo 4302, Mar del Plata, Buenos Aires B7608FDQ, Argentina)

  • Justo Jose Roberts

    (Research and Development Group on Geotechnologies and Energy, Engineering Faculty, National University of Mar del Plata (UNMdP), Av. Juan B. Justo 4302, Mar del Plata, Buenos Aires B7608FDQ, Argentina)

  • Pedro Osvaldo Prado

    (Research and Development Group on Geotechnologies and Energy, Engineering Faculty, National University of Mar del Plata (UNMdP), Av. Juan B. Justo 4302, Mar del Plata, Buenos Aires B7608FDQ, Argentina)

Abstract

Shadows severely affect the performance of solar photovoltaic (PV) systems. A proper description of this effect is useful for sizing and simulating PV systems when shadows cannot be avoided. Shading factors represent the basis for simulating the effect of shadows on solar modules. These factors can be used to estimate shading losses, calculate their I-V and P-V curves under shading conditions, or develop new maximum power point tracking (MPPT) techniques. Open-source libraries focused on solar energy have gained popularity in recent years. One of the currently most popular ones is the PV_LIB toolbox initially developed by Sandia Laboratories. PV_LIB significantly facilitates solar energy calculations. However, it currently lacks functions for taking into account shaded conditions. In this paper, a detailed Matlab-based method for calculating the shading factors is provided. The method has been used for elaborating a toolbox for shading calculations. The current work could help extend the functionalities of the PV_LIB toolbox. The results were compared against other currently popular computer programs, namely the System Advisor Model (SAM) and PVsyst. With this method, it is also possible to calculate shading factors with smaller time steps than possible with the mentioned programs. This work also shows the importance of using small time steps and how this can affect the accuracy of the calculated shading factors. The contribution of this work is providing a way of quantifying shadow losses in PV systems with Matlab, allowing for better accuracy, flexibility, and transparency during the calculation. The functions developed in this work can be accessed by contacting the authors.

Suggested Citation

  • Martín Silva & Justo Jose Roberts & Pedro Osvaldo Prado, 2021. "Calculation of the Shading Factors for Solar Modules with MATLAB," Energies, MDPI, vol. 14(15), pages 1-23, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4713-:d:607767
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/15/4713/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/15/4713/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Martin A. Green, 2016. "Commercial progress and challenges for photovoltaics," Nature Energy, Nature, vol. 1(1), pages 1-4, January.
    2. J. C. Teo & Rodney H. G. Tan & V. H. Mok & Vigna K. Ramachandaramurthy & ChiaKwang Tan, 2018. "Impact of Partial Shading on the P-V Characteristics and the Maximum Power of a Photovoltaic String," Energies, MDPI, vol. 11(7), pages 1-22, July.
    3. Ellabban, Omar & Abu-Rub, Haitham & Blaabjerg, Frede, 2014. "Renewable energy resources: Current status, future prospects and their enabling technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 748-764.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vytautas Bocullo & Linas Martišauskas & Darius Pupeikis & Ramūnas Gatautis & Rytis Venčaitis & Rimantas Bakas, 2023. "UAV Photogrammetry Application for Determining the Influence of Shading on Solar Photovoltaic Array Energy Efficiency," Energies, MDPI, vol. 16(3), pages 1-19, January.
    2. Zainali, Sebastian & Ma Lu, Silvia & Stridh, Bengt & Avelin, Anders & Amaducci, Stefano & Colauzzi, Michele & Campana, Pietro Elia, 2023. "Direct and diffuse shading factors modelling for the most representative agrivoltaic system layouts," Applied Energy, Elsevier, vol. 339(C).
    3. Dušan Katunský & Marián Vertaľ & Erika Dolníková & Silvia Zozuláková & Kristián Hutkai & Zuzana Dická, 2022. "Mutual Interaction of Daylight and Overheating in the Attic Space in Summer Time," Sustainability, MDPI, vol. 14(23), pages 1-25, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sales-Setién, Ester & Peñarrocha-Alós, Ignacio, 2020. "Robust estimation and diagnosis of wind turbine pitch misalignments at a wind farm level," Renewable Energy, Elsevier, vol. 146(C), pages 1746-1765.
    2. Xinxin Liu & Nan Li & Feng Liu & Hailin Mu & Longxi Li & Xiaoyu Liu, 2021. "Optimal Design on Fossil-to-Renewable Energy Transition of Regional Integrated Energy Systems under CO 2 Emission Abatement Control: A Case Study in Dalian, China," Energies, MDPI, vol. 14(10), pages 1-25, May.
    3. Francisco José Sepúlveda & María Teresa Miranda & Irene Montero & José Ignacio Arranz & Francisco Javier Lozano & Manuel Matamoros & Paloma Rodríguez, 2019. "Analysis of Potential Use of Linear Fresnel Collector for Direct Steam Generation in Industries of the Southwest of Europe," Energies, MDPI, vol. 12(21), pages 1-15, October.
    4. Hu, Xincheng & Banks, Jonathan & Wu, Linping & Liu, Wei Victor, 2020. "Numerical modeling of a coaxial borehole heat exchanger to exploit geothermal energy from abandoned petroleum wells in Hinton, Alberta," Renewable Energy, Elsevier, vol. 148(C), pages 1110-1123.
    5. Hassan M. H. Farh & Mohd F. Othman & Ali M. Eltamaly & M. S. Al-Saud, 2018. "Maximum Power Extraction from a Partially Shaded PV System Using an Interleaved Boost Converter," Energies, MDPI, vol. 11(10), pages 1-18, September.
    6. Rahim Zahedi & Reza Eskandarpanah & Mohammadhossein Akbari & Nima Rezaei & Paniz Mazloumin & Omid Noudeh Farahani, 2022. "Development of a New Simulation Model for the Reservoir Hydropower Generation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2241-2256, May.
    7. Li, Peidu & Gao, Xiaoqing & Li, Zhenchao & Ye, Tiange & Zhou, Xiyin, 2022. "Effects of fishery complementary photovoltaic power plant on near-surface meteorology and energy balance," Renewable Energy, Elsevier, vol. 187(C), pages 698-709.
    8. Saleem, Arslan & Kim, Man-Hoe, 2020. "Aerodynamic performance optimization of an airfoil-based airborne wind turbine using genetic algorithm," Energy, Elsevier, vol. 203(C).
    9. Zafar, Muhammad Wasif & Shahbaz, Muhammad & Hou, Fujun & Sinha, Avik, 2018. "¬¬¬¬¬¬From Nonrenewable to Renewable Energy and Its Impact on Economic Growth: Silver Line of Research & Development Expenditures in APEC Countries," MPRA Paper 90611, University Library of Munich, Germany, revised 10 Dec 2018.
    10. Diego Larrahondo & Ricardo Moreno & Harold R. Chamorro & Francisco Gonzalez-Longatt, 2021. "Comparative Performance of Multi-Period ACOPF and Multi-Period DCOPF under High Integration of Wind Power," Energies, MDPI, vol. 14(15), pages 1-15, July.
    11. Abel D Alonso & Seng Kok, 2018. "A resource-based view and dynamic capabilities approach in the context of a region’s international attractiveness: The recent case of Western Australia," Local Economy, London South Bank University, vol. 33(3), pages 307-328, May.
    12. Avri Eitan, 2021. "Promoting Renewable Energy to Cope with Climate Change—Policy Discourse in Israel," Sustainability, MDPI, vol. 13(6), pages 1-17, March.
    13. Zhang, Xiaochun & Ma, Chun & Song, Xia & Zhou, Yuyu & Chen, Weiping, 2016. "The impacts of wind technology advancement on future global energy," Applied Energy, Elsevier, vol. 184(C), pages 1033-1037.
    14. Kumar, Vikash, 2021. "Experimental investigation of exergetic efficiency of 3 side concave dimple roughened absorbers," Energy, Elsevier, vol. 215(PB).
    15. Shahryar Jafarinejad & Rebecca R. Hernandez & Sajjad Bigham & Bryan S. Beckingham, 2023. "The Intertwined Renewable Energy–Water–Environment (REWE) Nexus Challenges and Opportunities: A Case Study of California," Sustainability, MDPI, vol. 15(13), pages 1-16, July.
    16. Dandikas, Vasilis & Heuwinkel, Hauke & Lichti, Fabian & Eckl, Thomas & Drewes, Jörg E. & Koch, Konrad, 2018. "Correlation between hydrolysis rate constant and chemical composition of energy crops," Renewable Energy, Elsevier, vol. 118(C), pages 34-42.
    17. Oleksandr Korkh & Andrei Blinov & Dmitri Vinnikov & Andrii Chub, 2020. "Review of Isolated Matrix Inverters: Topologies, Modulation Methods and Applications," Energies, MDPI, vol. 13(9), pages 1-30, May.
    18. AL-Rasheedi, Majed & Gueymard, Christian A. & Al-Khayat, Mohammad & Ismail, Alaa & Lee, Jared A. & Al-Duaj, Hamad, 2020. "Performance evaluation of a utility-scale dual-technology photovoltaic power plant at the Shagaya Renewable Energy Park in Kuwait," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    19. Ruth M. Saint & Céline Garnier & Francesco Pomponi & John Currie, 2018. "Thermal Performance through Heat Retention in Integrated Collector-Storage Solar Water Heaters: A Review," Energies, MDPI, vol. 11(6), pages 1-26, June.
    20. Karunathilake, Hirushie & Hewage, Kasun & Mérida, Walter & Sadiq, Rehan, 2019. "Renewable energy selection for net-zero energy communities: Life cycle based decision making under uncertainty," Renewable Energy, Elsevier, vol. 130(C), pages 558-573.

    More about this item

    Keywords

    solar; shadows; Matlab; SAM; PVsyst;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4713-:d:607767. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.