IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i14p4149-d591476.html
   My bibliography  Save this article

Hydrate Phase Transition Kinetic Modeling for Nature and Industry–Where Are We and Where Do We Go?

Author

Listed:
  • Bjørn Kvamme

    (Hyzen Energy, 26701 Quail Creek, Laguna Hills, CA 92656, USA
    Strategic Carbon LLC, 20 Ladd St., Suite 200, Portsmouth, NH 03801, USA
    State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Xindu, Road No.8, Chengdu 610500, China)

  • Matthew Clarke

    (Department of Chemical & Petroleum Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB T2N 1N4, Canada)

Abstract

Hydrate problems in industry have historically motivated modeling of hydrates and hydrate phase transition dynamics, and much knowledge has been gained during the last fifty years of research. The interest in natural gas hydrate as energy source is increasing rapidly. Parallel to this, there is also a high focus on fluxes of methane from the oceans. A limited portion of the fluxes of methane comes directly from natural gas hydrates but a much larger portion of the fluxes involves hydrate mounds as a dynamic seal that slows down leakage fluxes. In this work we review some of the historical trends in kinetic modeling of hydrate formation and discussion. We also discuss a possible future development over to classical thermodynamics and residual thermodynamics as a platform for all phases, including water phases. This opens up for consistent thermodynamics in which Gibbs free energy for all phases are comparable in terms of stability, and also consistent calculation of enthalpies and entropies. Examples are used to demonstrate various stability limits and how various routes to hydrate formation lead to different hydrates. A reworked Classical Nucleation Theory (CNT) is utilized to illustrate that nucleation of hydrate is, as expected from physics, a nano-scale process in time and space. Induction times, or time for onset of massive growth, on the other hand, are frequently delayed by hydrate film transport barriers that slow down contact between gas and liquid water. It is actually demonstrated that the reworked CNT model is able to predict experimental induction times.

Suggested Citation

  • Bjørn Kvamme & Matthew Clarke, 2021. "Hydrate Phase Transition Kinetic Modeling for Nature and Industry–Where Are We and Where Do We Go?," Energies, MDPI, vol. 14(14), pages 1-47, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4149-:d:591476
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/14/4149/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/14/4149/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bjørn Kvamme & Jinzhou Zhao & Na Wei & Wantong Sun & Navid Saeidi & Jun Pei & Tatiana Kuznetsova, 2020. "Hydrate Production Philosophy and Thermodynamic Calculations," Energies, MDPI, vol. 13(3), pages 1-34, February.
    2. Bjørn Kvamme & Jinzhou Zhao & Na Wei & Navid Saeidi, 2020. "Hydrate—A Mysterious Phase or Just Misunderstood?," Energies, MDPI, vol. 13(4), pages 1-26, February.
    3. Bjørn Kvamme & Jinzhou Zhao & Na Wei & Wantong Sun & Mojdeh Zarifi & Navid Saeidi & Shouwei Zhou & Tatiana Kuznetsova & Qingping Li, 2020. "Why Should We Use Residual Thermodynamics for Calculation of Hydrate Phase Transitions?," Energies, MDPI, vol. 13(16), pages 1-30, August.
    4. Solomon Aforkoghene Aromada & Bjørn Kvamme & Na Wei & Navid Saeidi, 2019. "Enthalpies of Hydrate Formation and Dissociation from Residual Thermodynamics," Energies, MDPI, vol. 12(24), pages 1-26, December.
    5. Bjørn Kvamme, 2019. "Enthalpies of Hydrate Formation from Hydrate Formers Dissolved in Water," Energies, MDPI, vol. 12(6), pages 1-19, March.
    6. Bjørn Kvamme & Richard B. Coffin & Jinzhou Zhao & Na Wei & Shouwei Zhou & Qingping Li & Navid Saeidi & Yu-Chien Chien & Derek Dunn-Rankin & Wantong Sun & Mojdeh Zarifi, 2019. "Stages in the Dynamics of Hydrate Formation and Consequences for Design of Experiments for Hydrate Formation in Sediments," Energies, MDPI, vol. 12(17), pages 1-20, September.
    7. Bjørn Kvamme, 2019. "Environmentally Friendly Production of Methane from Natural Gas Hydrate Using Carbon Dioxide," Sustainability, MDPI, vol. 11(7), pages 1-23, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bjørn Kvamme & Atanas Vasilev, 2023. "Thermodynamic Feasibility of the Black Sea CH 4 Hydrate Replacement by CO 2 Hydrate," Energies, MDPI, vol. 16(3), pages 1-29, January.
    2. Maria De La Fuente & Sandra Arndt & Héctor Marín-Moreno & Tim A. Minshull, 2022. "Assessing the Benthic Response to Climate-Driven Methane Hydrate Destabilisation: State of the Art and Future Modelling Perspectives," Energies, MDPI, vol. 15(9), pages 1-32, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Wantong & Wei, Na & Zhao, Jinzhou & Kvamme, Bjørn & Zhou, Shouwei & Zhang, Liehui & Almenningen, Stian & Kuznetsova, Tatiana & Ersland, Geir & Li, Qingping & Pei, Jun & Li, Cong & Xiong, Chenyang, 2022. "Imitating possible consequences of drilling through marine hydrate reservoir," Energy, Elsevier, vol. 239(PA).
    2. Bjørn Kvamme & Jinzhou Zhao & Na Wei & Wantong Sun & Mojdeh Zarifi & Navid Saeidi & Shouwei Zhou & Tatiana Kuznetsova & Qingping Li, 2020. "Why Should We Use Residual Thermodynamics for Calculation of Hydrate Phase Transitions?," Energies, MDPI, vol. 13(16), pages 1-30, August.
    3. Bjørn Kvamme & Jinzhou Zhao & Na Wei & Wantong Sun & Navid Saeidi & Jun Pei & Tatiana Kuznetsova, 2020. "Hydrate Production Philosophy and Thermodynamic Calculations," Energies, MDPI, vol. 13(3), pages 1-34, February.
    4. Bjørn Kvamme & Jinzhou Zhao & Na Wei & Navid Saeidi, 2020. "Hydrate—A Mysterious Phase or Just Misunderstood?," Energies, MDPI, vol. 13(4), pages 1-26, February.
    5. Na Wei & Wantong Sun & Yingfeng Meng & Jinzhou Zhao & Bjørn Kvamme & Shouwei Zhou & Liehui Zhang & Qingping Li & Yao Zhang & Lin Jiang & Haitao Li & Jun Pei, 2020. "Hydrate Formation and Decomposition Regularities in Offshore Gas Reservoir Production Pipelines," Energies, MDPI, vol. 13(1), pages 1-22, January.
    6. Bjørn Kvamme & Atanas Vasilev, 2023. "Thermodynamic Feasibility of the Black Sea CH 4 Hydrate Replacement by CO 2 Hydrate," Energies, MDPI, vol. 16(3), pages 1-29, January.
    7. Bjørn Kvamme & Richard B. Coffin & Jinzhou Zhao & Na Wei & Shouwei Zhou & Qingping Li & Navid Saeidi & Yu-Chien Chien & Derek Dunn-Rankin & Wantong Sun & Mojdeh Zarifi, 2019. "Stages in the Dynamics of Hydrate Formation and Consequences for Design of Experiments for Hydrate Formation in Sediments," Energies, MDPI, vol. 12(17), pages 1-20, September.
    8. Solomon Aforkoghene Aromada & Nils Henrik Eldrup & Fredrik Normann & Lars Erik Øi, 2020. "Techno-Economic Assessment of Different Heat Exchangers for CO 2 Capture," Energies, MDPI, vol. 13(23), pages 1-27, November.
    9. Oleg Bazaluk & Kateryna Sai & Vasyl Lozynskyi & Mykhailo Petlovanyi & Pavlo Saik, 2021. "Research into Dissociation Zones of Gas Hydrate Deposits with a Heterogeneous Structure in the Black Sea," Energies, MDPI, vol. 14(5), pages 1-24, March.
    10. Liu, Fa-Ping & Li, Ai-Rong & Qing, Sheng-Lan & Luo, Ze-Dong & Ma, Yu-Ling, 2022. "Formation kinetics, mechanism of CO2 hydrate and its applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    11. Solomon Aforkoghene Aromada & Bjørn Kvamme & Na Wei & Navid Saeidi, 2019. "Enthalpies of Hydrate Formation and Dissociation from Residual Thermodynamics," Energies, MDPI, vol. 12(24), pages 1-26, December.
    12. Xueping Chen & Shuaijun Li & Peng Zhang & Wenting Chen & Qingbai Wu & Jing Zhan & Yingmei Wang, 2021. "Promoted Disappearance of CO 2 Hydrate Self-Preservation Effect by Surfactant SDS," Energies, MDPI, vol. 14(13), pages 1-14, June.
    13. Solomon Aforkoghene Aromada & Nils Henrik Eldrup & Lars Erik Øi, 2022. "Cost and Emissions Reduction in CO 2 Capture Plant Dependent on Heat Exchanger Type and Different Process Configurations: Optimum Temperature Approach Analysis," Energies, MDPI, vol. 15(2), pages 1-40, January.
    14. Jinze Song & Yuhao Li & Shuai Liu & Youming Xiong & Weixin Pang & Yufa He & Yaxi Mu, 2022. "Comparison of Machine Learning Algorithms for Sand Production Prediction: An Example for a Gas-Hydrate-Bearing Sand Case," Energies, MDPI, vol. 15(18), pages 1-32, September.
    15. Federico Rossi & Yan Li & Alberto Maria Gambelli, 2021. "Thermodynamic and Kinetic Description of the Main Effects Related to the Memory Effect during Carbon Dioxide Hydrates Formation in a Confined Environment," Sustainability, MDPI, vol. 13(24), pages 1-21, December.
    16. Alberto Maria Gambelli & Mirko Filipponi & Federico Rossi, 2022. "Sequential Formation of CO 2 Hydrates in a Confined Environment: Description of Phase Equilibrium Boundary, Gas Consumption, Formation Rate and Memory Effect," Sustainability, MDPI, vol. 14(14), pages 1-22, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4149-:d:591476. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.