IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i13p3775-d580806.html
   My bibliography  Save this article

Solar Irradiance Forecast Based on Cloud Movement Prediction

Author

Listed:
  • Aleksander Radovan

    (BISS Ltd., 10000 Zagreb, Croatia)

  • Viktor Šunde

    (Department of Electric Machines, Drives and Automation, Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia)

  • Danijel Kučak

    (Department of Software Engineering, Algebra University College, 10000 Zagreb, Croatia)

  • Željko Ban

    (Department of Control and Computer Engineering, Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia)

Abstract

Solar energy production based on a photovoltaic system is closely related to solar irradiance. Therefore, the planning of production is based on the prediction of solar irradiance. The optimal use of different energy storage systems requires an accurate prediction of solar irradiation with at least an hourly time horizon. In this work, a solar irradiance prediction method is developed based on the prediction of solar shading by clouds. The method is based on determining the current cloud position and estimating the velocity from a sequence of multiple images taken with a 180-degree wide-angle camera with a resolution of 5 s. The cloud positions for the next hour interval are calculated from the estimated current cloud position and velocity. Based on the cloud position, the percentage of solar overshadowing by clouds is determined, i.e., the solar overshadowing curve for the next hour interval is calculated. The solar irradiance is determined by normalizing the percentage of the solar unshadowing curve to the mean value of the irradiance predicted by the hydrometeorological institute for that hourly interval. Image processing for cloud detection and localization is performed using a computer vision library and the Java programming language. The algorithm developed in this work leads to improved accuracy and resolution of irradiance prediction for the next hour interval. The predicted irradiance curve can be used as a predicted reference for solar energy production in energy storage system optimization.

Suggested Citation

  • Aleksander Radovan & Viktor Šunde & Danijel Kučak & Željko Ban, 2021. "Solar Irradiance Forecast Based on Cloud Movement Prediction," Energies, MDPI, vol. 14(13), pages 1-25, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3775-:d:580806
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/13/3775/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/13/3775/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jingyue Wang & Zheng Qian & Jingyi Wang & Yan Pei, 2020. "Hour-Ahead Photovoltaic Power Forecasting Using an Analog Plus Neural Network Ensemble Method," Energies, MDPI, vol. 13(12), pages 1-17, June.
    2. Yosui Miyazaki & Yusuke Kameda & Junji Kondoh, 2019. "A Power-Forecasting Method for Geographically Distributed PV Power Systems using Their Previous Datasets," Energies, MDPI, vol. 12(24), pages 1-14, December.
    3. Muhammad Aslam & Jae-Myeong Lee & Hyung-Seung Kim & Seung-Jae Lee & Sugwon Hong, 2019. "Deep Learning Models for Long-Term Solar Radiation Forecasting Considering Microgrid Installation: A Comparative Study," Energies, MDPI, vol. 13(1), pages 1-15, December.
    4. Dominika Kaczorowska & Jacek Rezmer & Michal Jasinski & Tomasz Sikorski & Vishnu Suresh & Zbigniew Leonowicz & Pawel Kostyla & Jaroslaw Szymanda & Przemyslaw Janik, 2020. "A Case Study on Battery Energy Storage System in a Virtual Power Plant: Defining Charging and Discharging Characteristics," Energies, MDPI, vol. 13(24), pages 1-22, December.
    5. Christil Pasion & Torrey Wagner & Clay Koschnick & Steven Schuldt & Jada Williams & Kevin Hallinan, 2020. "Machine Learning Modeling of Horizontal Photovoltaics Using Weather and Location Data," Energies, MDPI, vol. 13(10), pages 1-14, May.
    6. Nailya Maitanova & Jan-Simon Telle & Benedikt Hanke & Matthias Grottke & Thomas Schmidt & Karsten von Maydell & Carsten Agert, 2020. "A Machine Learning Approach to Low-Cost Photovoltaic Power Prediction Based on Publicly Available Weather Reports," Energies, MDPI, vol. 13(3), pages 1-23, February.
    7. Tingting Zhu & Yiren Guo & Cong Wang & Chao Ni, 2020. "Inter-Hour Forecast of Solar Radiation Based on the Structural Equation Model and Ensemble Model," Energies, MDPI, vol. 13(17), pages 1-15, September.
    8. Youngsung Kwon & Alexis Kwasinski & Andres Kwasinski, 2019. "Solar Irradiance Forecast Using Naïve Bayes Classifier Based on Publicly Available Weather Forecasting Variables," Energies, MDPI, vol. 12(8), pages 1-13, April.
    9. Jessica Wojtkiewicz & Matin Hosseini & Raju Gottumukkala & Terrence Lynn Chambers, 2019. "Hour-Ahead Solar Irradiance Forecasting Using Multivariate Gated Recurrent Units," Energies, MDPI, vol. 12(21), pages 1-13, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dinko Vukadinović, 2022. "Advanced Control Techniques for Wind/Solar/Battery Systems," Energies, MDPI, vol. 15(9), pages 1-2, May.
    2. Jeehong Kim & Seok-ho Lee & Kil To Chong, 2022. "A Study of Neural Network Framework for Power Generation Prediction of a Solar Power Plant," Energies, MDPI, vol. 15(22), pages 1-19, November.
    3. Wen-Chang Tsai & Chia-Sheng Tu & Chih-Ming Hong & Whei-Min Lin, 2023. "A Review of State-of-the-Art and Short-Term Forecasting Models for Solar PV Power Generation," Energies, MDPI, vol. 16(14), pages 1-30, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giorgio Guariso & Giuseppe Nunnari & Matteo Sangiorgio, 2020. "Multi-Step Solar Irradiance Forecasting and Domain Adaptation of Deep Neural Networks," Energies, MDPI, vol. 13(15), pages 1-18, August.
    2. Hongbo Zhu & Bing Zhang & Weidong Song & Jiguang Dai & Xinmei Lan & Xinyue Chang, 2023. "Power-Weighted Prediction of Photovoltaic Power Generation in the Context of Structural Equation Modeling," Sustainability, MDPI, vol. 15(14), pages 1-18, July.
    3. Lioua Kolsi & Sameer Al-Dahidi & Souad Kamel & Walid Aich & Sahbi Boubaker & Nidhal Ben Khedher, 2022. "Prediction of Solar Energy Yield Based on Artificial Intelligence Techniques for the Ha’il Region, Saudi Arabia," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
    4. Miguel López Santos & Xela García-Santiago & Fernando Echevarría Camarero & Gonzalo Blázquez Gil & Pablo Carrasco Ortega, 2022. "Application of Temporal Fusion Transformer for Day-Ahead PV Power Forecasting," Energies, MDPI, vol. 15(14), pages 1-22, July.
    5. Rial A. Rajagukguk & Raden A. A. Ramadhan & Hyun-Jin Lee, 2020. "A Review on Deep Learning Models for Forecasting Time Series Data of Solar Irradiance and Photovoltaic Power," Energies, MDPI, vol. 13(24), pages 1-23, December.
    6. Tingting Zhu & Yuanzhe Li & Zhenye Li & Yiren Guo & Chao Ni, 2022. "Inter-Hour Forecast of Solar Radiation Based on Long Short-Term Memory with Attention Mechanism and Genetic Algorithm," Energies, MDPI, vol. 15(3), pages 1-14, January.
    7. Lu, Yunbo & Wang, Lunche & Zhu, Canming & Zou, Ling & Zhang, Ming & Feng, Lan & Cao, Qian, 2023. "Predicting surface solar radiation using a hybrid radiative Transfer–Machine learning model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    8. Vu, Ba Hau & Chung, Il-Yop, 2022. "Optimal generation scheduling and operating reserve management for PV generation using RNN-based forecasting models for stand-alone microgrids," Renewable Energy, Elsevier, vol. 195(C), pages 1137-1154.
    9. Zhengwei Huang & Jin Huang & Jintao Min, 2022. "SSA-LSTM: Short-Term Photovoltaic Power Prediction Based on Feature Matching," Energies, MDPI, vol. 15(20), pages 1-16, October.
    10. Andi A. H. Lateko & Hong-Tzer Yang & Chao-Ming Huang, 2022. "Short-Term PV Power Forecasting Using a Regression-Based Ensemble Method," Energies, MDPI, vol. 15(11), pages 1-21, June.
    11. Hernandez-Matheus, Alejandro & Löschenbrand, Markus & Berg, Kjersti & Fuchs, Ida & Aragüés-Peñalba, Mònica & Bullich-Massagué, Eduard & Sumper, Andreas, 2022. "A systematic review of machine learning techniques related to local energy communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    12. Victor Hugo Wentz & Joylan Nunes Maciel & Jorge Javier Gimenez Ledesma & Oswaldo Hideo Ando Junior, 2022. "Solar Irradiance Forecasting to Short-Term PV Power: Accuracy Comparison of ANN and LSTM Models," Energies, MDPI, vol. 15(7), pages 1-23, March.
    13. Llinet Benavides Cesar & Miguel Ángel Manso Callejo & Calimanut-Ionut Cira & Ramon Alcarria, 2023. "CyL-GHI: Global Horizontal Irradiance Dataset Containing 18 Years of Refined Data at 30-Min Granularity from 37 Stations Located in Castile and León (Spain)," Data, MDPI, vol. 8(4), pages 1-21, March.
    14. Harpreet Sharma & Sachin Mishra & Javed Dhillon & Naveen Kumar Sharma & Mohit Bajaj & Rizwan Tariq & Ateeq Ur Rehman & Muhammad Shafiq & Habib Hamam, 2022. "Feasibility of Solar Grid-Based Industrial Virtual Power Plant for Optimal Energy Scheduling: A Case of Indian Power Sector," Energies, MDPI, vol. 15(3), pages 1-21, January.
    15. Hasna Hissou & Said Benkirane & Azidine Guezzaz & Mourade Azrour & Abderrahim Beni-Hssane, 2023. "A Novel Machine Learning Approach for Solar Radiation Estimation," Sustainability, MDPI, vol. 15(13), pages 1-21, July.
    16. Gianfranco Di Lorenzo & Erika Stracqualursi & Leonardo Micheli & Salvatore Celozzi & Rodolfo Araneo, 2022. "Prognostic Methods for Photovoltaic Systems’ Underperformance and Degradation: Status, Perspectives, and Challenges," Energies, MDPI, vol. 15(17), pages 1-6, September.
    17. Mohamed Mohana & Abdelaziz Salah Saidi & Salem Alelyani & Mohammed J. Alshayeb & Suhail Basha & Ali Eisa Anqi, 2021. "Small-Scale Solar Photovoltaic Power Prediction for Residential Load in Saudi Arabia Using Machine Learning," Energies, MDPI, vol. 14(20), pages 1-18, October.
    18. Nguyen, Thi Ngoc & Müsgens, Felix, 2022. "What drives the accuracy of PV output forecasts?," Applied Energy, Elsevier, vol. 323(C).
    19. Adam Krechowicz & Maria Krechowicz & Katarzyna Poczeta, 2022. "Machine Learning Approaches to Predict Electricity Production from Renewable Energy Sources," Energies, MDPI, vol. 15(23), pages 1-41, December.
    20. Elizabeth Michael, Neethu & Hasan, Shazia & Al-Durra, Ahmed & Mishra, Manohar, 2022. "Short-term solar irradiance forecasting based on a novel Bayesian optimized deep Long Short-Term Memory neural network," Applied Energy, Elsevier, vol. 324(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3775-:d:580806. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.