IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i12p3702-d579104.html
   My bibliography  Save this article

Offshore Wind Potential of West Central Taiwan: A Case Study

Author

Listed:
  • Wen-Ko Hsu

    (Department of Biomechatronics Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan)

  • Chung-Kee Yeh

    (Department of Biomechatronics Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan)

Abstract

In this study, we present the wind distributions from a long-term offshore met mast and a novel approach based on the measure–correlate–predict (MCP) method from short-term onshore-wind-turbine data. The annual energy production (AEP) and capacity factors (CFs) of one onshore and four offshore wind-turbine generators (WTG) available on the market are evaluated on the basis of wind-distribution analysis from both the real met mast and the MCP method. Here, we also consider the power loss from a 4-month light detection and ranging (LiDAR) power-curve test on an onshore turbine to enhance the accuracy of further AEP and CF evaluations. The achieved Weibull distributions could efficiently represent the probability distribution of wind-speed variation, mean wind speed (MWS), and both the scale and shape parameters of Weibull distribution in Taiwan sites. The power-loss effect is also considered when calculating the AEPs and CFs of different WTGs. Successful offshore wind development requires (1) quick, accurate, and economical harnessing of a wind resource and (2) selection of the most suitable and efficient turbine for a specific offshore site.

Suggested Citation

  • Wen-Ko Hsu & Chung-Kee Yeh, 2021. "Offshore Wind Potential of West Central Taiwan: A Case Study," Energies, MDPI, vol. 14(12), pages 1-20, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3702-:d:579104
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/12/3702/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/12/3702/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jung, Sungmoon & Arda Vanli, O. & Kwon, Soon-Duck, 2013. "Wind energy potential assessment considering the uncertainties due to limited data," Applied Energy, Elsevier, vol. 102(C), pages 1492-1503.
    2. Dedecca, João Gorenstein & Hakvoort, Rudi A. & Ortt, J. Roland, 2016. "Market strategies for offshore wind in Europe: A development and diffusion perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 286-296.
    3. Weekes, S.M. & Tomlin, A.S., 2014. "Comparison between the bivariate Weibull probability approach and linear regression for assessment of the long-term wind energy resource using MCP," Renewable Energy, Elsevier, vol. 68(C), pages 529-539.
    4. Dhunny, A.Z. & Lollchund, M.R. & Rughooputh, S.D.D.V., 2017. "Wind energy evaluation for a highly complex terrain using Computational Fluid Dynamics (CFD)," Renewable Energy, Elsevier, vol. 101(C), pages 1-9.
    5. A.Z. Dhunny & M.R. Lollchund & S.D.D.V. Rughooputh, 2016. "Numerical analysis of wind flow patterns over complex hilly terrains: comparison between two commonly used CFD software," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 39(3/4), pages 181-203.
    6. Monfared, Mohammad & Rastegar, Hasan & Kojabadi, Hossein Madadi, 2009. "A new strategy for wind speed forecasting using artificial intelligent methods," Renewable Energy, Elsevier, vol. 34(3), pages 845-848.
    7. Shu, Z.R. & Li, Q.S. & Chan, P.W., 2015. "Investigation of offshore wind energy potential in Hong Kong based on Weibull distribution function," Applied Energy, Elsevier, vol. 156(C), pages 362-373.
    8. Alkhalidi, Mohamad A. & Al-Dabbous, Shoug Kh. & Neelamani, S. & Aldashti, Hassan A., 2019. "Wind energy potential at coastal and offshore locations in the state of Kuwait," Renewable Energy, Elsevier, vol. 135(C), pages 529-539.
    9. de Medeiros, Armando Lúcio Ramos & Araújo, Alex Maurício & de Oliveira Filho, Oyama Douglas Queiroz & Rohatgi, Janardan & dos Santos, Maurílio José, 2015. "Analysis of design parameters of large-sized wind turbines by non-dimensional model," Energy, Elsevier, vol. 93(P1), pages 1146-1154.
    10. Panwar, N.L. & Kaushik, S.C. & Kothari, Surendra, 2011. "Role of renewable energy sources in environmental protection: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1513-1524, April.
    11. Velázquez, Sergio & Carta, José A. & Matías, J.M., 2011. "Comparison between ANNs and linear MCP algorithms in the long-term estimation of the cost per kWh produced by a wind turbine at a candidate site: A case study in the Canary Islands," Applied Energy, Elsevier, vol. 88(11), pages 3869-3881.
    12. Monteforte, M. & Lo Re, C. & Ferreri, G.B., 2015. "Wave energy assessment in Sicily (Italy)," Renewable Energy, Elsevier, vol. 78(C), pages 276-287.
    13. Oh, Ki-Yong & Nam, Woochul & Ryu, Moo Sung & Kim, Ji-Young & Epureanu, Bogdan I., 2018. "A review of foundations of offshore wind energy convertors: Current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 16-36.
    14. Shahram Hanifi & Xiaolei Liu & Zi Lin & Saeid Lotfian, 2020. "A Critical Review of Wind Power Forecasting Methods—Past, Present and Future," Energies, MDPI, vol. 13(15), pages 1-24, July.
    15. Andrea Farkas & Nastia Degiuli & Ivana Martić, 2019. "Assessment of Offshore Wave Energy Potential in the Croatian Part of the Adriatic Sea and Comparison with Wind Energy Potential," Energies, MDPI, vol. 12(12), pages 1-20, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weekes, S.M. & Tomlin, A.S. & Vosper, S.B. & Skea, A.K. & Gallani, M.L. & Standen, J.J., 2015. "Long-term wind resource assessment for small and medium-scale turbines using operational forecast data and measure–correlate–predict," Renewable Energy, Elsevier, vol. 81(C), pages 760-769.
    2. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    3. Kang, Dongbum & Ko, Kyungnam & Huh, Jongchul, 2015. "Determination of extreme wind values using the Gumbel distribution," Energy, Elsevier, vol. 86(C), pages 51-58.
    4. Mifsud, Michael D. & Sant, Tonio & Farrugia, Robert N., 2018. "A comparison of Measure-Correlate-Predict Methodologies using LiDAR as a candidate site measurement device for the Mediterranean Island of Malta," Renewable Energy, Elsevier, vol. 127(C), pages 947-959.
    5. KC, Anup & Whale, Jonathan & Urmee, Tania, 2019. "Urban wind conditions and small wind turbines in the built environment: A review," Renewable Energy, Elsevier, vol. 131(C), pages 268-283.
    6. Drisya, G.V. & Asokan, K. & Kumar, K. Satheesh, 2018. "Diverse dynamical characteristics across the frequency spectrum of wind speed fluctuations," Renewable Energy, Elsevier, vol. 119(C), pages 540-550.
    7. Lo Re, Carlo & Manno, Giorgio & Basile, Mirko & Ciraolo, Giuseppe, 2022. "The opportunity of using wave energy converters in a Mediterranean hot spot," Renewable Energy, Elsevier, vol. 196(C), pages 1095-1114.
    8. Weekes, S.M. & Tomlin, A.S., 2014. "Comparison between the bivariate Weibull probability approach and linear regression for assessment of the long-term wind energy resource using MCP," Renewable Energy, Elsevier, vol. 68(C), pages 529-539.
    9. Woochul Nam & Ki-Yong Oh, 2020. "Mutually Complementary Measure-Correlate-Predict Method for Enhanced Long-Term Wind-Resource Assessment," Mathematics, MDPI, vol. 8(10), pages 1-20, October.
    10. Akintayo T. Abolude & Wen Zhou, 2018. "A Comparative Computational Fluid Dynamic Study on the Effects of Terrain Type on Hub-Height Wind Aerodynamic Properties," Energies, MDPI, vol. 12(1), pages 1-14, December.
    11. Joan Pau Sierra & Ricard Castrillo & Marc Mestres & César Mösso & Piero Lionello & Luigi Marzo, 2020. "Impact of Climate Change on Wave Energy Resource in the Mediterranean Coast of Morocco," Energies, MDPI, vol. 13(11), pages 1-19, June.
    12. Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.
    13. Deep, Sneh & Sarkar, Arnab & Ghawat, Mayur & Rajak, Manoj Kumar, 2020. "Estimation of the wind energy potential for coastal locations in India using the Weibull model," Renewable Energy, Elsevier, vol. 161(C), pages 319-339.
    14. José V. P. Miguel & Eliane A. Fadigas & Ildo L. Sauer, 2019. "The Influence of the Wind Measurement Campaign Duration on a Measure-Correlate-Predict (MCP)-Based Wind Resource Assessment," Energies, MDPI, vol. 12(19), pages 1-15, September.
    15. Evangelia Dialyna & Theocharis Tsoutsos, 2021. "Wave Energy in the Mediterranean Sea: Resource Assessment, Deployed WECs and Prospects," Energies, MDPI, vol. 14(16), pages 1-18, August.
    16. Majidi Nezhad, Meysam & Neshat, Mehdi & Piras, Giuseppe & Astiaso Garcia, Davide, 2022. "Sites exploring prioritisation of offshore wind energy potential and mapping for wind farms installation: Iranian islands case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    17. Aliashim Albani & Mohd Zamri Ibrahim, 2017. "Wind Energy Potential and Power Law Indexes Assessment for Selected Near-Coastal Sites in Malaysia," Energies, MDPI, vol. 10(3), pages 1-21, March.
    18. Georgios Batsis & Panagiotis Partsinevelos & Georgios Stavrakakis, 2021. "A Deep Learning and GIS Approach for the Optimal Positioning of Wave Energy Converters," Energies, MDPI, vol. 14(20), pages 1-21, October.
    19. He, J.Y. & Chan, P.W. & Li, Q.S. & Tong, H.W., 2023. "Mapping future offshore wind resources in the South China Sea under climate change by regional climate modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    20. Carta, José A. & Velázquez, Sergio & Cabrera, Pedro, 2013. "A review of measure-correlate-predict (MCP) methods used to estimate long-term wind characteristics at a target site," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 362-400.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3702-:d:579104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.