IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i11p3134-d563699.html
   My bibliography  Save this article

Energy Efficiency Improvement Solutions for Supermarkets by Low-E Glass Door and Digital Semi-Hermetic Compressor

Author

Listed:
  • Piyanut Saengsikhiao

    (Energy Technology Program, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand)

  • Juntakan Taweekun

    (Department of Mechanical and Mechatronics Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand)

Abstract

This research presents an energy efficiency improvement solution for supermarkets with the use of low-E glass doors for open refrigerators and a digital semi-hermetic compressor to fix the speed of semi-hermetic compressors. The impact of a door’s installation causes its load to be reduced by 40%, and the compressor shuts down frequently, which decreases its lifetime. In order to ensure that energy-saving solutions do not affect maintenance costs, the installation of a digital semi-hermetic compressor is proposed to lower costs and save energy. Our economic results from tests carried out at a 3000 square meter supermarket, which was open from 6:00 a.m. to 12:00 a.m. and in which we installed 82 doors on 15 open refrigerators, showed a 1.1-year payback period with an energy saving rate of 192,220 kWh/year for store No.1 (R22) and in which we installed 80 doors on 15 open refrigerators, showed a 1.4-year payback period with an energy saving rate of 171,185 kWh/year for store No.2 (R404A). The energy-saving effects of the digital semi-hermetic compressor, which fixes the speed of the semi-compressor and solves the problem of impact from fridge door installation, showed a 2.9-year payback period with an energy saving rate of 26,890 kWh/year for store No.1 (R22) and showed a 2.9-year payback period with an energy saving rate of 26,571 kWh/year for store No.2 (R404A). The results of store No.1 (R22) and store No.2 (R404A) showed no differences. This research is an extension of an energy-saving project that can be carried out on a continuous basis, increasing the efficiency of energy use and being a sustainable source of energy conservation.

Suggested Citation

  • Piyanut Saengsikhiao & Juntakan Taweekun, 2021. "Energy Efficiency Improvement Solutions for Supermarkets by Low-E Glass Door and Digital Semi-Hermetic Compressor," Energies, MDPI, vol. 14(11), pages 1-11, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3134-:d:563699
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/11/3134/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/11/3134/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alzuwaid, F.A. & Ge, Y.T. & Tassou, S.A. & Sun, J., 2016. "The novel use of phase change materials in an open type refrigerated display cabinet: A theoretical investigation," Applied Energy, Elsevier, vol. 180(C), pages 76-85.
    2. Sivanand Somasundaram & Sundar Raj Thangavelu & Alex Chong, 2020. "Effect of Existing Façade’s Construction and Orientation on the Performance of Low-E-Based Retrofit Double Glazing in Tropical Climate," Energies, MDPI, vol. 13(8), pages 1-14, April.
    3. Chen, Yen-Hsiang & Shih, Fu-Yuan & Lee, Ming-Tsang & Lee, Yung-Chun & Chen, Yu-Bin, 2020. "Development of lightweight energy-saving glass and its near-field electromagnetic analysis," Energy, Elsevier, vol. 193(C).
    4. Borges, Bruno N. & Melo, Cláudio & Hermes, Christian J.L., 2015. "Transient simulation of a two-door frost-free refrigerator subjected to periodic door opening and evaporator frosting," Applied Energy, Elsevier, vol. 147(C), pages 386-395.
    5. Piyanut Saengsikhiao & Juntakan Taweekun & Kittinan Maliwan & Somchai Sae-ung & Thanansak Theppaya, 2020. "Investigation and Analysis of R463A as an Alternative Refrigerant to R404A with Lower Global Warming Potential," Energies, MDPI, vol. 13(6), pages 1-19, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bartosz Gil & Anna Szczepanowska & Sabina Rosiek, 2021. "New HFC/HFO Blends as Refrigerants for the Vapor-Compression Refrigeration System (VCRS)," Energies, MDPI, vol. 14(4), pages 1-23, February.
    2. Chien, Chih-Cheng & Lin, Po-Hung & Chiang, Chih-Chan & Chen, Yu-Bin, 2022. "Realization of energy harvesting and temperature indication functions for zero-energy thermos flask," Energy, Elsevier, vol. 257(C).
    3. Ana Fernández-Guillamón & Ángel Molina-García & Francisco Vera-García & José A. Almendros-Ibáñez, 2021. "Organic Rankine Cycle Optimization Performance Analysis Based on Super-Heater Pressure: Comparison of Working Fluids," Energies, MDPI, vol. 14(9), pages 1-16, April.
    4. Bin Li & Jiaming Guo & Jingjing Xia & Xinyu Wei & Hao Shen & Yongfeng Cao & Huazhong Lu & Enli Lü, 2020. "Temperature Distribution in Insulated Temperature-Controlled Container by Numerical Simulation," Energies, MDPI, vol. 13(18), pages 1-16, September.
    5. Adhiyaman Ilangovan & Samia Hamdane & Pedro D. Silva & Pedro D. Gaspar & Luís Pires, 2022. "Promising and Potential Applications of Phase Change Materials in the Cold Chain: A Systematic Review," Energies, MDPI, vol. 15(20), pages 1-15, October.
    6. Igor Iljin & Rimantas Stonkus & Raimondas Jasevičius, 2023. "Investigation of Changes in Packaging Properties of Refrigerated Food Products," Sustainability, MDPI, vol. 15(8), pages 1-20, April.
    7. Zheng, Zhuang & Pan, Jia & Huang, Gongsheng & Luo, Xiaowei, 2022. "A bottom-up intra-hour proactive scheduling of thermal appliances for household peak avoiding based on model predictive control," Applied Energy, Elsevier, vol. 323(C).
    8. Adriano da S. Marques & Monica Carvalho & Álvaro A. V. Ochoa & Ronelly J. Souza & Carlos A. C. dos Santos, 2020. "Exergoeconomic Assessment of a Compact Electricity-Cooling Cogeneration Unit," Energies, MDPI, vol. 13(20), pages 1-18, October.
    9. Harrington, Lloyd & Aye, Lu & Fuller, Bob, 2018. "Impact of room temperature on energy consumption of household refrigerators: Lessons from analysis of field and laboratory data," Applied Energy, Elsevier, vol. 211(C), pages 346-357.
    10. Christian J. L. Hermes & Joel Boeng & Diogo L. da Silva & Fernando T. Knabben & Andrew D. Sommers, 2021. "Evaporator Frosting in Refrigerating Appliances: Fundamentals and Applications," Energies, MDPI, vol. 14(18), pages 1-23, September.
    11. Xinghui Zhang & Qili Shi & Lingai Luo & Yilin Fan & Qian Wang & Guanguan Jia, 2021. "Research Progress on the Phase Change Materials for Cold Thermal Energy Storage," Energies, MDPI, vol. 14(24), pages 1-46, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3134-:d:563699. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.