IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i10p2794-d553568.html
   My bibliography  Save this article

Application of Lifecycle Measures for an Integrated Method of Environmental Sustainability Assessment of Radio Frequency Identification and Wireless Sensor Networks

Author

Listed:
  • Aldona Kluczek

    (Faculty of Production Engineering, Warsaw University of Technology, 02-524 Warsaw, Poland)

  • Bartlomiej Gladysz

    (Faculty of Production Engineering, Warsaw University of Technology, 02-524 Warsaw, Poland)

  • Krzysztof Ejsmont

    (Faculty of Production Engineering, Warsaw University of Technology, 02-524 Warsaw, Poland)

Abstract

Internet of Things (IoT) technology has advanced in recent years, leading to improvements of manufacturing processes. As a result of such improvements, environmental sustainability assessments for technologies have been requested by international control agencies. Although various assessment approaches are widely applied, IoT technology requires effective assessment methods to support the decision-making process and that incorporate qualitative measures to create quantifiable values. In this paper, a new environmental sustainability assessment method is developed to assess radio frequency identification (RFID) and wireless sensors networks (WSN). This integrated assessment method incorporates a modified and redesigned conceptual methodology based on technical project evaluation (IMATOV) and an extension of conventional lifecycle measures. The results shows the most and least important metrics. The most important metrics are the categories “electronic devices disposed of completely” and “decrease in stocks”, with the greatest GWFs (20% and 19%, respectively) and IAVs (127% and 117%, respectively) and moderate consolidated degrees of fulfillment. Relatively low degrees of fulfillment are achieved by categories such as “decrease in numbers of assets”, “supply chain echelons benefiting RFID”, and “tag lifecycle duration”, with IAVs below 10%. This study promotes an integrated method to support decision-making processes in the context of environmental sustainability assessments based on lifecycle measures.

Suggested Citation

  • Aldona Kluczek & Bartlomiej Gladysz & Krzysztof Ejsmont, 2021. "Application of Lifecycle Measures for an Integrated Method of Environmental Sustainability Assessment of Radio Frequency Identification and Wireless Sensor Networks," Energies, MDPI, vol. 14(10), pages 1-22, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2794-:d:553568
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/10/2794/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/10/2794/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yongxin Liao & Fernando Deschamps & Eduardo de Freitas Rocha Loures & Luiz Felipe Pierin Ramos, 2017. "Past, present and future of Industry 4.0 - a systematic literature review and research agenda proposal," International Journal of Production Research, Taylor & Francis Journals, vol. 55(12), pages 3609-3629, June.
    2. Pilaiwan Phupattanasilp & Sheau-Ru Tong, 2019. "Augmented Reality in the Integrative Internet of Things (AR-IoT): Application for Precision Farming," Sustainability, MDPI, vol. 11(9), pages 1-17, May.
    3. Kamble, Sachin S. & Gunasekaran, Angappa & Ghadge, Abhijeet & Raut, Rakesh, 2020. "A performance measurement system for industry 4.0 enabled smart manufacturing system in SMMEs- A review and empirical investigation," International Journal of Production Economics, Elsevier, vol. 229(C).
    4. Umar Farooq & Wu Tao & Ganjar Alfian & Yong-Shin Kang & Jongtae Rhee, 2016. "ePedigree Traceability System for the Agricultural Food Supply Chain to Ensure Consumer Health," Sustainability, MDPI, vol. 8(9), pages 1-16, August.
    5. Kluczek, Aldona, 2019. "An energy-led sustainability assessment of production systems – An approach for improving energy efficiency performance," International Journal of Production Economics, Elsevier, vol. 216(C), pages 190-203.
    6. Cabeza, Luisa F. & Rincón, Lídia & Vilariño, Virginia & Pérez, Gabriel & Castell, Albert, 2014. "Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 394-416.
    7. Shaikh, Faisal Karim & Zeadally, Sherali, 2016. "Energy harvesting in wireless sensor networks: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1041-1054.
    8. Nilgun Fescioglu-Unver & Sung Hee Choi & Dongmok Sheen & Soundar Kumara, 2015. "RFID in production and service systems: Technology, applications and issues," Information Systems Frontiers, Springer, vol. 17(6), pages 1369-1380, December.
    9. Jelena Končar & Aleksandar Grubor & Radenko Marić & Sonja Vučenović & Goran Vukmirović, 2020. "Setbacks to IoT Implementation in the Function of FMCG Supply Chain Sustainability during COVID-19 Pandemic," Sustainability, MDPI, vol. 12(18), pages 1-21, September.
    10. Paolo Bellavista & Carlo Giannelli & Riccardo Zamagna, 2017. "The PeRvasive Environment Sensing and Sharing Solution," Sustainability, MDPI, vol. 9(4), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peerally, Jahan Ara & Santiago, Fernando & De Fuentes, Claudia & Moghavvemi, Sedigheh, 2022. "Towards a firm-level technological capability framework to endorse and actualize the Fourth Industrial Revolution in developing countries," Research Policy, Elsevier, vol. 51(10).
    2. Bartlomiej Gladysz & Krzysztof Ejsmont & Aldona Kluczek & Donatella Corti & Stanislaw Marciniak, 2020. "A Method for an Integrated Sustainability Assessment of RFID Technology," Resources, MDPI, vol. 9(9), pages 1-24, September.
    3. Alok Raj & Anand Jeyaraj, 2023. "Antecedents and consequents of industry 4.0 adoption using technology, organization and environment (TOE) framework: A meta-analysis," Annals of Operations Research, Springer, vol. 322(1), pages 101-124, March.
    4. Rasha Fady Ismail & Fadi Safieddine & Rawad Hammad & Mazhar Hallak Kantakji, 2022. "Towards Sustainable Production Processes Reengineering: Case Study at INCOM Egypt," Sustainability, MDPI, vol. 14(11), pages 1-25, May.
    5. Burek, Jasmina & Nutter, Darin W., 2019. "A life cycle assessment-based multi-objective optimization of the purchased, solar, and wind energy for the grocery, perishables, and general merchandise multi-facility distribution center network," Applied Energy, Elsevier, vol. 235(C), pages 1427-1446.
    6. Sony, Michael & Naik, Subhash, 2020. "Industry 4.0 integration with socio-technical systems theory: A systematic review and proposed theoretical model," Technology in Society, Elsevier, vol. 61(C).
    7. Joanna Wyrwa, 2020. "A review of the European Union financial instruments supporting the innovative activity of enterprises in the context of Industry 4.0 in the years 2021-2027," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 8(1), pages 1146-1161, September.
    8. Muhammad Rahies Khan & Amir Manzoor, 2021. "Application and Impact of New Technologies in the Supply Chain Management During COVID-19 Pandemic: A Systematic Literature Review," International Journal of Economics & Business Administration (IJEBA), International Journal of Economics & Business Administration (IJEBA), vol. 0(2), pages 277-292.
    9. Dimitrios A. Papathanasopoulos & Konstantinos N. Giannousakis & Evangelos S. Dermatas & Epaminondas D. Mitronikas, 2021. "Vibration Monitoring for Position Sensor Fault Diagnosis in Brushless DC Motor Drives," Energies, MDPI, vol. 14(8), pages 1-24, April.
    10. Sierra-Pérez, Jorge & Rodríguez-Soria, Beatriz & Boschmonart-Rives, Jesús & Gabarrell, Xavier, 2018. "Integrated life cycle assessment and thermodynamic simulation of a public building’s envelope renovation: Conventional vs. Passivhaus proposal," Applied Energy, Elsevier, vol. 212(C), pages 1510-1521.
    11. Luis M. López-Ochoa & Jesús Las-Heras-Casas & Luis M. López-González & César García-Lozano, 2020. "Energy Renovation of Residential Buildings in Cold Mediterranean Zones Using Optimized Thermal Envelope Insulation Thicknesses: The Case of Spain," Sustainability, MDPI, vol. 12(6), pages 1-34, March.
    12. Sungwoo Lee & Sungho Tae & Seungjun Roh & Taehyung Kim, 2015. "Green Template for Life Cycle Assessment of Buildings Based on Building Information Modeling: Focus on Embodied Environmental Impact," Sustainability, MDPI, vol. 7(12), pages 1-15, December.
    13. Rekettye, Gábor & Rekettye, Gábor, 2019. "The Effects of Digitalization on Customer Experience," Proceedings of the ENTRENOVA - ENTerprise REsearch InNOVAtion Conference (2019), Rovinj, Croatia, in: Proceedings of the ENTRENOVA - ENTerprise REsearch InNOVAtion Conference, Rovinj, Croatia, 12-14 September 2019, pages 414-420, IRENET - Society for Advancing Innovation and Research in Economy, Zagreb.
    14. Patricia González-Vallejo & Radu Muntean & Jaime Solís-Guzmán & Madelyn Marrero, 2020. "Carbon Footprint of Dwelling Construction in Romania and Spain. A Comparative Analysis with the OERCO2 Tool," Sustainability, MDPI, vol. 12(17), pages 1-22, August.
    15. Farnaz Derakhshan & Shamim Yousefi, 2019. "A review on the applications of multiagent systems in wireless sensor networks," International Journal of Distributed Sensor Networks, , vol. 15(5), pages 15501477198, May.
    16. Christoph March & Ina Schieferdecker, 2021. "Technological Sovereignty as Ability, Not Autarky," CESifo Working Paper Series 9139, CESifo.
    17. Reyes, Pedro M. & Li, Suhong & Visich, John K., 2016. "Determinants of RFID adoption stage and perceived benefits," European Journal of Operational Research, Elsevier, vol. 254(3), pages 801-812.
    18. Roux, Charlotte & Schalbart, Patrick & Assoumou, Edi & Peuportier, Bruno, 2016. "Integrating climate change and energy mix scenarios in LCA of buildings and districts," Applied Energy, Elsevier, vol. 184(C), pages 619-629.
    19. Cui, Li & Chan, Hing Kai & Zhou, Yizhuo & Dai, Jing & Lim, Jia Jia, 2019. "Exploring critical factors of green business failure based on Grey-Decision Making Trial and Evaluation Laboratory (DEMATEL)," Journal of Business Research, Elsevier, vol. 98(C), pages 450-461.
    20. Antonello Monsù Scolaro & Stefania De Medici, 2021. "Downcycling and Upcycling in Rehabilitation and Adaptive Reuse of Pre-Existing Buildings: Re-Designing Technological Performances in an Environmental Perspective," Energies, MDPI, vol. 14(21), pages 1-23, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2794-:d:553568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.