IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i10p2772-d552989.html
   My bibliography  Save this article

Stand-Alone Direct Current Power Network Based on Photovoltaics and Lithium-Ion Batteries for Reverse Osmosis Desalination Plant

Author

Listed:
  • Vishwas Powar

    (Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29631, USA)

  • Rajendra Singh

    (Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29631, USA
    Department of Automotive Engineering, Clemson University, Clemson, SC 29631, USA)

Abstract

Plummeting reserves and increasing demand of freshwater resources have culminated into a global water crisis. Desalination is a potential solution to mitigate the freshwater shortage. However, the process of desalination is expensive and energy-intensive. Due to the water-energy-climate nexus, there is an urgent need to provide sustainable low-cost electrical power for desalination that has the lowest impact on climate and related ecosystem challenges. For a large-scale reverse osmosis desalination plant, we have proposed the design and analysis of a photovoltaics and battery-based stand-alone direct current power network. The design methodology focusses on appropriate sizing, optimum tilt and temperature compensation techniques based on 10 years of irradiation data for the Carlsbad Desalination Plant in California, USA. A decision-tree approach is employed for ensuring hourly load-generation balance. The power flow analysis evaluates self-sufficient generation even during cloud cover contingencies. The primary goal of the proposed system is to maximize the utilization of generated photovoltaic power and battery energy storage with minimal conversions and transmission losses. The direct current based topology includes high-voltage transmission, on-the-spot local inversion, situational awareness and cyber security features. Lastly, economic feasibility of the proposed system is carried out for a plant lifetime of 30 years. The variable effect of utility-scale battery storage costs for 16–18 h of operation is studied. Our results show that the proposed design will provide low electricity costs ranging from 3.79 to 6.43 ¢/kWh depending on the debt rate. Without employing the concept of baseload electric power, photovoltaics and battery-based direct current power networks for large-scale desalination plants can achieve tremendous energy savings and cost reduction with negligible carbon footprint, thereby providing affordable water for all.

Suggested Citation

  • Vishwas Powar & Rajendra Singh, 2021. "Stand-Alone Direct Current Power Network Based on Photovoltaics and Lithium-Ion Batteries for Reverse Osmosis Desalination Plant," Energies, MDPI, vol. 14(10), pages 1-23, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2772-:d:552989
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/10/2772/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/10/2772/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peñate, Baltasar & Castellano, Fernando & Bello, Alejandro & García-Rodríguez, Lourdes, 2011. "Assessment of a stand-alone gradual capacity reverse osmosis desalination plant to adapt to wind power availability: A case study," Energy, Elsevier, vol. 36(7), pages 4372-4384.
    2. Esmaeil Ahmadi & Benjamin McLellan & Behnam Mohammadi-Ivatloo & Tetsuo Tezuka, 2020. "The Role of Renewable Energy Resources in Sustainability of Water Desalination as a Potential Fresh-Water Source: An Updated Review," Sustainability, MDPI, vol. 12(13), pages 1-31, June.
    3. Ali, Muhammad Tauha & Fath, Hassan E.S. & Armstrong, Peter R., 2011. "A comprehensive techno-economical review of indirect solar desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4187-4199.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. María Magdalena Armendáriz-Ontiveros & Germán Eduardo Dévora-Isiordia & Jorge Rodríguez-López & Reyna Guadalupe Sánchez-Duarte & Jesús Álvarez-Sánchez & Yedidia Villegas-Peralta & María del Rosario Ma, 2022. "Effect of Temperature on Energy Consumption and Polarization in Reverse Osmosis Desalination Using a Spray-Cooled Photovoltaic System," Energies, MDPI, vol. 15(20), pages 1-15, October.
    2. Prahaladh Paniyil & Vishwas Powar & Rajendra Singh, 2021. "Sustainable Intelligent Charging Infrastructure for Electrification of Transportation," Energies, MDPI, vol. 14(17), pages 1-23, August.
    3. Gabriele Mosconi & Maurizio F. Acciarri, 2023. "Financial Analysis of a Desalination–Wastewater Recycle Plant Powered by a DC-DC Photovoltaic-Batteries System on the Aeolian Islands, Italy," Energies, MDPI, vol. 16(13), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mokri, Alaeddine & Aal Ali, Mona & Emziane, Mahieddine, 2013. "Solar energy in the United Arab Emirates: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 340-375.
    2. Uche, J. & Círez, F. & Bayod, A.A. & Martínez, A., 2013. "On-grid and off-grid batch-ED (electrodialysis) process: Simulation and experimental tests," Energy, Elsevier, vol. 57(C), pages 44-54.
    3. Shafieian, Abdellah & Khiadani, Mehdi & Nosrati, Ataollah, 2018. "A review of latest developments, progress, and applications of heat pipe solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 273-304.
    4. Ihsan Ullah & Mohammad G. Rasul, 2018. "Recent Developments in Solar Thermal Desalination Technologies: A Review," Energies, MDPI, vol. 12(1), pages 1-31, December.
    5. Shalaby, S.M., 2017. "Reverse osmosis desalination powered by photovoltaic and solar Rankine cycle power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 789-797.
    6. Ahmadi, Esmaeil & McLellan, Benjamin & Tezuka, Tetsuo, 2020. "The economic synergies of modelling the renewable energy-water nexus towards sustainability," Renewable Energy, Elsevier, vol. 162(C), pages 1347-1366.
    7. Arunkumar, T. & Wang, Jiaqiang & Denkenberger, D., 2021. "Capillary flow-driven efficient nanomaterials for seawater desalination: Review of classifications, challenges, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    8. Gude, Veera Gnaneswar, 2015. "Energy storage for desalination processes powered by renewable energy and waste heat sources," Applied Energy, Elsevier, vol. 137(C), pages 877-898.
    9. Salehi, Ali Akbar & Ghannadi-Maragheh, Mohammad & Torab-Mostaedi, Meisam & Torkaman, Rezvan & Asadollahzadeh, Mehdi, 2020. "A review on the water-energy nexus for drinking water production from humid air," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    10. Muna Hindiyeh & Aiman Albatayneh & Rashed Altarawneh & Mustafa Jaradat & Murad Al-Omary & Qasem Abdelal & Tarek Tayara & Osama Khalil & Adel Juaidi & Ramez Abdallah & Partick Dutournié & Mejdi Jeguiri, 2021. "Sea Level Rise Mitigation by Global Sea Water Desalination Using Renewable-Energy-Powered Plants," Sustainability, MDPI, vol. 13(17), pages 1-21, August.
    11. Lai, Xiaotian & Long, Rui & Liu, Zhichun & Liu, Wei, 2018. "Stirling engine powered reverse osmosis for brackish water desalination to utilize moderate temperature heat," Energy, Elsevier, vol. 165(PA), pages 916-930.
    12. Amjad, Muhammad & Raza, Ghulam & Xin, Yan & Pervaiz, Shahid & Xu, Jinliang & Du, Xiaoze & Wen, Dongsheng, 2017. "Volumetric solar heating and steam generation via gold nanofluids," Applied Energy, Elsevier, vol. 206(C), pages 393-400.
    13. M, Chandrashekara & Yadav, Avadhesh, 2017. "Water desalination system using solar heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1308-1330.
    14. Roham Torabi & Alvaro Gomes & Diogo Lobo & Fernando Morgado‐Dias, 2020. "Modelling demand flexibility and energy storage to support increased penetration of renewable energy resources on Porto Santo," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(6), pages 1118-1132, December.
    15. Novosel, T. & Ćosić, B. & Pukšec, T. & Krajačić, G. & Duić, N. & Mathiesen, B.V. & Lund, H. & Mustafa, M., 2015. "Integration of renewables and reverse osmosis desalination – Case study for the Jordanian energy system with a high share of wind and photovoltaics," Energy, Elsevier, vol. 92(P3), pages 270-278.
    16. Rosales-Asensio, Enrique & Borge-Diez, David & Pérez-Hoyos, Ana & Colmenar-Santos, Antonio, 2019. "Reduction of water cost for an existing wind-energy-based desalination scheme: A preliminary configuration," Energy, Elsevier, vol. 167(C), pages 548-560.
    17. Pinto, F. Silva & Marques, R. Cunha, 2017. "Desalination projects economic feasibility: A standardization of cost determinants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 904-915.
    18. Bundschuh, Jochen & Ghaffour, Noreddine & Mahmoudi, Hacene & Goosen, Mattheus & Mushtaq, Shahbaz & Hoinkis, Jan, 2015. "Low-cost low-enthalpy geothermal heat for freshwater production: Innovative applications using thermal desalination processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 196-206.
    19. Yang, Xufei & Xu, Jinliang & Miao, Zheng & Zou, Jinghuang & Yu, Chao, 2015. "Operation of an organic Rankine cycle dependent on pumping flow rates and expander torques," Energy, Elsevier, vol. 90(P1), pages 864-878.
    20. Clément Lacroix & Maxime Perier-Muzet & Driss Stitou, 2019. "Dynamic Modeling and Preliminary Performance Analysis of a New Solar Thermal Reverse Osmosis Desalination Process," Energies, MDPI, vol. 12(20), pages 1-32, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2772-:d:552989. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.