IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i9p2385-d356223.html
   My bibliography  Save this article

Voltage Estimation Method for Power Distribution Networks Using High-Precision Measurements

Author

Listed:
  • Chan-Hyeok Oh

    (Department of Electrical Engineering in Chonnam National University, Gwangju 61186, Korea)

  • Seok-Il Go

    (Department of Electrical Engineering in Chonnam National University, Gwangju 61186, Korea)

  • Joon-Ho Choi

    (Department of Electrical Engineering in Chonnam National University, Gwangju 61186, Korea)

  • Seon-Ju Ahn

    (Department of Electrical Engineering in Chonnam National University, Gwangju 61186, Korea)

  • Sang-Yun Yun

    (Department of Electrical Engineering in Chonnam National University, Gwangju 61186, Korea)

Abstract

In this study, we propose a voltage estimation method for the radial distribution network with distributed generators (DGs) using high-precision measurements (HPMs). The proposed method uses the section loads center for voltage estimation because individual loads are not measured in the distribution system. The bus voltage was estimated through correction of the section load center by using an HPM at the end of the main feeder. The correction parameter of the section load center was calculated by comparing the initial voltage estimates and the measurements of the HPMs. After that, the voltage of the main feeder was re-estimated. Finally, the bus voltage in the lateral feeder was estimated based on the voltage estimates in the main feeder and the current measurements in the lateral feeder. The accuracy of the proposed algorithm was verified through case studies by using test systems implemented in MATLAB, Simulink, and Python environments. In order to verify the utilization of the proposed method to the practical system, a test with injection of approximately 5% of normally distributed random noise was performed. Through the results of the case studies, when an HPM is installed at the end of the main feeder, it demonstrated that the voltage estimation accuracy can be greatly improved by the proposed method. Compared with the existing methods, the proposed method was less affected by PV and showed robustness to measurement noise.

Suggested Citation

  • Chan-Hyeok Oh & Seok-Il Go & Joon-Ho Choi & Seon-Ju Ahn & Sang-Yun Yun, 2020. "Voltage Estimation Method for Power Distribution Networks Using High-Precision Measurements," Energies, MDPI, vol. 13(9), pages 1-23, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2385-:d:356223
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/9/2385/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/9/2385/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. McDonald, Jim, 2008. "Adaptive intelligent power systems: Active distribution networks," Energy Policy, Elsevier, vol. 36(12), pages 4346-4351, December.
    2. Sang-Yun Yun & Chul-Min Chu & Seong-Chul Kwon & Il-Keun Song & Joon-Ho Choi, 2014. "The Development and Empirical Evaluation of the Korean Smart Distribution Management System," Energies, MDPI, vol. 7(3), pages 1-31, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piotr Kacejko & Paweł Pijarski, 2021. "Optimal Voltage Control in MV Network with Distributed Generation," Energies, MDPI, vol. 14(2), pages 1-19, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oleksandr Miroshnyk & Oleksandr Moroz & Taras Shchur & Andrii Chepizhnyi & Mohamed Qawaqzeh & Sławomir Kocira, 2023. "Investigation of Smart Grid Operation Modes with Electrical Energy Storage System," Energies, MDPI, vol. 16(6), pages 1-13, March.
    2. Darius Corbier & Frédéric Gonand & Marie Bessec, 2015. "Impacts of decentralised power generation on distribution networks: a statistical typology of European countries," Working Papers 1509, Chaire Economie du climat.
    3. Syed Ali Abbas Kazmi & Muhammad Khuram Shahzad & Akif Zia Khan & Dong Ryeol Shin, 2017. "Smart Distribution Networks: A Review of Modern Distribution Concepts from a Planning Perspective," Energies, MDPI, vol. 10(4), pages 1-47, April.
    4. Poppen, Silvia, 2014. "Auswirkungen dezentraler Erzeugungsanlagen auf das Stromversorgungssystem: Ausgestaltungsmöglichkeiten der Bereitstellung neuer Erzeugungsanlagen," Arbeitspapiere 146, University of Münster, Institute for Cooperatives.
    5. Yazhou Jiang & Chen-Ching Liu & Yin Xu, 2016. "Smart Distribution Systems," Energies, MDPI, vol. 9(4), pages 1-20, April.
    6. Kun-Long Chen & Ren-Shuo Wan & Yi Guo & Nanming Chen & Wei-Jen Lee, 2017. "A Redundancy Mechanism Design for Hall-Based Electronic Current Transformers," Energies, MDPI, vol. 10(3), pages 1-14, March.
    7. Cossent, Rafael & Gómez, Tomás & Olmos, Luis, 2011. "Large-scale integration of renewable and distributed generation of electricity in Spain: Current situation and future needs," Energy Policy, Elsevier, vol. 39(12), pages 8078-8087.
    8. Arends, Marcel & Hendriks, Paul H.J., 2014. "Smart grids, smart network companies," Utilities Policy, Elsevier, vol. 28(C), pages 1-11.
    9. Komsan Hongesombut & Suphicha Punyakunlaset & Sillawat Romphochai, 2021. "Under Frequency Protection Enhancement of an Islanded Active Distribution Network Using a Virtual Inertia-Controlled-Battery Energy Storage System," Sustainability, MDPI, vol. 13(2), pages 1-39, January.
    10. Karthikeyan Nainar & Florin Iov, 2020. "Smart Meter Measurement-Based State Estimation for Monitoring of Low-Voltage Distribution Grids," Energies, MDPI, vol. 13(20), pages 1-18, October.
    11. Hao Xiao & Wei Pei & Zuomin Dong & Li Kong & Dan Wang, 2018. "Application and Comparison of Metaheuristic and New Metamodel Based Global Optimization Methods to the Optimal Operation of Active Distribution Networks," Energies, MDPI, vol. 11(1), pages 1-29, January.
    12. de Joode, J. & Jansen, J.C. & van der Welle, A.J. & Scheepers, M.J.J., 2009. "Increasing penetration of renewable and distributed electricity generation and the need for different network regulation," Energy Policy, Elsevier, vol. 37(8), pages 2907-2915, August.
    13. Veldman, Else & Gibescu, Madeleine & Slootweg, Han (J.G.) & Kling, Wil L., 2013. "Scenario-based modelling of future residential electricity demands and assessing their impact on distribution grids," Energy Policy, Elsevier, vol. 56(C), pages 233-247.
    14. Dileep, G., 2020. "A survey on smart grid technologies and applications," Renewable Energy, Elsevier, vol. 146(C), pages 2589-2625.
    15. Yuan, Jiahai & Xu, Yan & Hu, Zhaoguang, 2012. "Delivering power system transition in China," Energy Policy, Elsevier, vol. 50(C), pages 751-772.
    16. Ghadi, M. Jabbari & Ghavidel, Sahand & Rajabi, Amin & Azizivahed, Ali & Li, Li & Zhang, Jiangfeng, 2019. "A review on economic and technical operation of active distribution systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 38-53.
    17. Gilbert Ahamer, 2022. "Why Biomass Fuels Are Principally Not Carbon Neutral," Energies, MDPI, vol. 15(24), pages 1-39, December.
    18. Ilia Shushpanov & Konstantin Suslov & Pavel Ilyushin & Denis N. Sidorov, 2021. "Towards the Flexible Distribution Networks Design Using the Reliability Performance Metric," Energies, MDPI, vol. 14(19), pages 1-24, September.
    19. Brown, Stephen & Pyke, David & Steenhof, Paul, 2010. "Electric vehicles: The role and importance of standards in an emerging market," Energy Policy, Elsevier, vol. 38(7), pages 3797-3806, July.
    20. Ferrari, Mario L. & Pascenti, Matteo & Sorce, Alessandro & Traverso, Alberto & Massardo, Aristide F., 2014. "Real-time tool for management of smart polygeneration grids including thermal energy storage," Applied Energy, Elsevier, vol. 130(C), pages 670-678.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2385-:d:356223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.