IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i8p1884-d344839.html
   My bibliography  Save this article

Optimal Energy and Reserve Market Management in Renewable Microgrid-PEVs Parking Lot Systems: V2G, Demand Response and Sustainability Costs

Author

Listed:
  • Viviani Caroline Onishi

    (Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
    INESC Coimbra, University of Coimbra, DEEC, Polo II, 3030-290 Coimbra, Portugal)

  • Carlos Henggeler Antunes

    (INESC Coimbra, University of Coimbra, DEEC, Polo II, 3030-290 Coimbra, Portugal
    Department of Electrical and Computer Engineering, University of Coimbra, Polo II, 3030-290 Coimbra, Portugal)

  • João Pedro Fernandes Trovão

    (INESC Coimbra, University of Coimbra, DEEC, Polo II, 3030-290 Coimbra, Portugal
    Department of Electrical & Computer Engineering, University of Sherbrooke, Sherbrooke, QC J1K 2R1, Canada)

Abstract

Vehicle-to-grid (V2G) technology heralds great promise as a demand-side resource to contribute to more efficient grid management and promote the use of decentralized renewable energy. In this light, we propose a new optimization model for the sustainable energy and reserve market management in renewable-driven microgrid (RMG) plug-in electric vehicles (PEVs) parking lot systems. The RMG is composed of a hybrid photovoltaic/wind/hydrogen energy and storage system, along with local dispatchable generation units and bidirectional grid connection. The RMG is coupled to a smart PEVs parking lot, which is equipped with grid-to-vehicle (G2V) and V2G technologies allowing for not only PEVs aggregation and control but also optimal allocation of energy resources. Time-of-use (TOU) prices are considered in a demand response program (DRP) to enhance both economic and environmental performances by encouraging end-users to shift their energy demands from peak to off-peak time periods. Additionally, the model accounts for an economic incentive to PEVs owners to compensate for battery degradation. The integrated system eco-efficiency is evaluated through the application of the novel life cycle assessment-based Eco-cost indicator. The resulting mixed-integer linear programming model to minimize sustainability costs is implemented in GAMS and solved to global optimality. Different case studies are performed to demonstrate the effectiveness of the proposed modelling approach. Energy analyses results reveal that the optimal G2V-V2G operation, allied to TOU prices in a DRP, and reserve market management can reduce around 42% the energy and environmental costs of the RMG-PEVs parking lot system.

Suggested Citation

  • Viviani Caroline Onishi & Carlos Henggeler Antunes & João Pedro Fernandes Trovão, 2020. "Optimal Energy and Reserve Market Management in Renewable Microgrid-PEVs Parking Lot Systems: V2G, Demand Response and Sustainability Costs," Energies, MDPI, vol. 13(8), pages 1-24, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:1884-:d:344839
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/8/1884/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/8/1884/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rishabh Ghotge & Yitzhak Snow & Samira Farahani & Zofia Lukszo & Ad van Wijk, 2020. "Optimized Scheduling of EV Charging in Solar Parking Lots for Local Peak Reduction under EV Demand Uncertainty," Energies, MDPI, vol. 13(5), pages 1-18, March.
    2. van der Kam, Mart & van Sark, Wilfried, 2015. "Smart charging of electric vehicles with photovoltaic power and vehicle-to-grid technology in a microgrid; a case study," Applied Energy, Elsevier, vol. 152(C), pages 20-30.
    3. Honarmand, Masoud & Zakariazadeh, Alireza & Jadid, Shahram, 2014. "Optimal scheduling of electric vehicles in an intelligent parking lot considering vehicle-to-grid concept and battery condition," Energy, Elsevier, vol. 65(C), pages 572-579.
    4. Shaukat, N. & Khan, B. & Ali, S.M. & Mehmood, C.A. & Khan, J. & Farid, U. & Majid, M. & Anwar, S.M. & Jawad, M. & Ullah, Z., 2018. "A survey on electric vehicle transportation within smart grid system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1329-1349.
    5. Yong, Jia Ying & Ramachandaramurthy, Vigna K. & Tan, Kang Miao & Mithulananthan, N., 2015. "A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 365-385.
    6. Nikoobakht, Ahmad & Aghaei, Jamshid & Khatami, Roohallah & Mahboubi-Moghaddam, Esmaeel & Parvania, Masood, 2019. "Stochastic flexible transmission operation for coordinated integration of plug-in electric vehicles and renewable energy sources," Applied Energy, Elsevier, vol. 238(C), pages 225-238.
    7. Mohammadi Landi, Meysam & Mohammadi, Mohammad & Rastegar, Mohammad, 2018. "Simultaneous determination of optimal capacity and charging profile of plug-in electric vehicle parking lots in distribution systems," Energy, Elsevier, vol. 158(C), pages 504-511.
    8. Ju, Liwei & Tan, Zhongfu & Yuan, Jinyun & Tan, Qingkun & Li, Huanhuan & Dong, Fugui, 2016. "A bi-level stochastic scheduling optimization model for a virtual power plant connected to a wind–photovoltaic–energy storage system considering the uncertainty and demand response," Applied Energy, Elsevier, vol. 171(C), pages 184-199.
    9. Mortaz, Ebrahim & Vinel, Alexander & Dvorkin, Yury, 2019. "An optimization model for siting and sizing of vehicle-to-grid facilities in a microgrid," Applied Energy, Elsevier, vol. 242(C), pages 1649-1660.
    10. Zheng, Yanchong & Niu, Songyan & Shang, Yitong & Shao, Ziyun & Jian, Linni, 2019. "Integrating plug-in electric vehicles into power grids: A comprehensive review on power interaction mode, scheduling methodology and mathematical foundation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 424-439.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sagar Hossain & Md. Rokonuzzaman & Kazi Sajedur Rahman & A. K. M. Ahasan Habib & Wen-Shan Tan & Md Mahmud & Shahariar Chowdhury & Sittiporn Channumsin, 2023. "Grid-Vehicle-Grid (G2V2G) Efficient Power Transmission: An Overview of Concept, Operations, Benefits, Concerns, and Future Challenges," Sustainability, MDPI, vol. 15(7), pages 1-24, March.
    2. Sarah Ouédraogo & Ghjuvan Antone Faggianelli & Guillaume Pigelet & Jean Laurent Duchaud & Gilles Notton, 2020. "Application of Optimal Energy Management Strategies for a Building Powered by PV/Battery System in Corsica Island," Energies, MDPI, vol. 13(17), pages 1-20, September.
    3. Md. Rayid Hasan Mojumder & Fahmida Ahmed Antara & Md. Hasanuzzaman & Basem Alamri & Mohammad Alsharef, 2022. "Electric Vehicle-to-Grid (V2G) Technologies: Impact on the Power Grid and Battery," Sustainability, MDPI, vol. 14(21), pages 1-53, October.
    4. Sunoh Kim & Jin Hur, 2020. "A Probabilistic Modeling Based on Monte Carlo Simulation of Wind Powered EV Charging Stations for Steady-States Security Analysis," Energies, MDPI, vol. 13(20), pages 1-13, October.
    5. Amrutha Raju Battula & Sandeep Vuddanti & Surender Reddy Salkuti, 2021. "Review of Energy Management System Approaches in Microgrids," Energies, MDPI, vol. 14(17), pages 1-32, September.
    6. Patrick Dossow & Maximilian Hampel, 2023. "Synergies of Electric Vehicle Multi-Use: Analyzing the Implementation Effort for Use Case Combinations in Smart E-Mobility," Energies, MDPI, vol. 16(5), pages 1-35, March.
    7. Roberta Olindo & Nathalie Schmitt & Joost Vogtländer, 2021. "Life Cycle Assessments on Battery Electric Vehicles and Electrolytic Hydrogen: The Need for Calculation Rules and Better Databases on Electricity," Sustainability, MDPI, vol. 13(9), pages 1-22, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asaad Mohammad & Ramon Zamora & Tek Tjing Lie, 2020. "Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling," Energies, MDPI, vol. 13(17), pages 1-20, September.
    2. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
    3. George-Williams, H. & Wade, N. & Carpenter, R.N., 2022. "A probabilistic framework for the techno-economic assessment of smart energy hubs for electric vehicle charging," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    4. Md. Mosaraf Hossain Khan & Amran Hossain & Aasim Ullah & Molla Shahadat Hossain Lipu & S. M. Shahnewaz Siddiquee & M. Shafiul Alam & Taskin Jamal & Hafiz Ahmed, 2021. "Integration of Large-Scale Electric Vehicles into Utility Grid: An Efficient Approach for Impact Analysis and Power Quality Assessment," Sustainability, MDPI, vol. 13(19), pages 1-18, October.
    5. Raja S, Charles & Kumar N M, Vijaya & J, Senthil kumar & Nesamalar J, Jeslin Drusila, 2021. "Enhancing system reliability by optimally integrating PHEV charging station and renewable distributed generators: A Bi-Level programming approach," Energy, Elsevier, vol. 229(C).
    6. Das, H.S. & Rahman, M.M. & Li, S. & Tan, C.W., 2020. "Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    7. Khemakhem, Siwar & Rekik, Mouna & Krichen, Lotfi, 2019. "Double layer home energy supervision strategies based on demand response and plug-in electric vehicle control for flattening power load curves in a smart grid," Energy, Elsevier, vol. 167(C), pages 312-324.
    8. Yi, Tao & Cheng, Xiaobin & Peng, Peng, 2022. "Two-stage optimal allocation of charging stations based on spatiotemporal complementarity and demand response: A framework based on MCS and DBPSO," Energy, Elsevier, vol. 239(PC).
    9. Seddig, Katrin & Jochem, Patrick & Fichtner, Wolf, 2017. "Integrating renewable energy sources by electric vehicle fleets under uncertainty," Energy, Elsevier, vol. 141(C), pages 2145-2153.
    10. Shepero, Mahmoud & Munkhammar, Joakim & Widén, Joakim & Bishop, Justin D.K. & Boström, Tobias, 2018. "Modeling of photovoltaic power generation and electric vehicles charging on city-scale: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 61-71.
    11. Zhou, Yuekuan & Cao, Sunliang & Hensen, Jan L.M. & Lund, Peter D., 2019. "Energy integration and interaction between buildings and vehicles: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    12. Dileep, G., 2020. "A survey on smart grid technologies and applications," Renewable Energy, Elsevier, vol. 146(C), pages 2589-2625.
    13. Kyuho Maeng & Sungmin Ko & Jungwoo Shin & Youngsang Cho, 2020. "How Much Electricity Sharing Will Electric Vehicle Owners Allow from Their Battery? Incorporating Vehicle-to-Grid Technology and Electricity Generation Mix," Energies, MDPI, vol. 13(16), pages 1-25, August.
    14. Hoogvliet, T.W. & Litjens, G.B.M.A. & van Sark, W.G.J.H.M., 2017. "Provision of regulating- and reserve power by electric vehicle owners in the Dutch market," Applied Energy, Elsevier, vol. 190(C), pages 1008-1019.
    15. Gaizka Saldaña & Jose Ignacio San Martin & Inmaculada Zamora & Francisco Javier Asensio & Oier Oñederra, 2019. "Electric Vehicle into the Grid: Charging Methodologies Aimed at Providing Ancillary Services Considering Battery Degradation," Energies, MDPI, vol. 12(12), pages 1-37, June.
    16. Tuballa, Maria Lorena & Abundo, Michael Lochinvar, 2016. "A review of the development of Smart Grid technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 710-725.
    17. Ahmad Almaghrebi & Fares Aljuheshi & Mostafa Rafaie & Kevin James & Mahmoud Alahmad, 2020. "Data-Driven Charging Demand Prediction at Public Charging Stations Using Supervised Machine Learning Regression Methods," Energies, MDPI, vol. 13(16), pages 1-21, August.
    18. Saleh Aghajan-Eshkevari & Sasan Azad & Morteza Nazari-Heris & Mohammad Taghi Ameli & Somayeh Asadi, 2022. "Charging and Discharging of Electric Vehicles in Power Systems: An Updated and Detailed Review of Methods, Control Structures, Objectives, and Optimization Methodologies," Sustainability, MDPI, vol. 14(4), pages 1-31, February.
    19. Morsy Nour & José Pablo Chaves-Ávila & Gaber Magdy & Álvaro Sánchez-Miralles, 2020. "Review of Positive and Negative Impacts of Electric Vehicles Charging on Electric Power Systems," Energies, MDPI, vol. 13(18), pages 1-34, September.
    20. Shang, Yitong & Liu, Man & Shao, Ziyun & Jian, Linni, 2020. "Internet of smart charging points with photovoltaic Integration: A high-efficiency scheme enabling optimal dispatching between electric vehicles and power grids," Applied Energy, Elsevier, vol. 278(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:1884-:d:344839. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.