IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i6p1478-d335026.html
   My bibliography  Save this article

Analysis of the Converter Synchronizing Method for the Contribution of Battery Energy Storage Systems to Inertia Emulation

Author

Listed:
  • Andrés Peña Asensio

    (Departamento de Ingeniería, Eléctrica Universidad Carlos III de Madrid, 28911 Leganés, Spain)

  • Francisco Gonzalez-Longatt

    (Institutt for Elektro, IT og Kybernetikk,Universitetet I Sørøst-Norge, 3918 Porsgrunn, Norway)

  • Santiago Arnaltes

    (Departamento de Ingeniería, Eléctrica Universidad Carlos III de Madrid, 28911 Leganés, Spain)

  • Jose Luis Rodríguez-Amenedo

    (Departamento de Ingeniería, Eléctrica Universidad Carlos III de Madrid, 28911 Leganés, Spain)

Abstract

This paper presents a comprehensive analysis of the effect of the converter synchronizing methods on the contribution that Battery Energy Storage Systems (BESSs) can provide for the support of the inertial response of a power system. Solutions based on phase-locked loop (PLL) synchronization and virtual synchronous machine (VSM) synchronization without PLL are described and then compared by using time-domain simulations for an isolated microgrid (MG) case study. The simulation results showed that inertial response can be provided both with and without the use of a PLL. However, the behavior in the first moments of the inertia response differed. For the PLL-based solutions, the transient response was dominated by the low-level current controllers, which imposed fast under-damped oscillations, while the VSM systems presented a slower response resulting in a higher amount of energy exchanged and therefore a greater contribution to the support of the system inertial response. Moreover, it was demonstrated that PLL-based solutions with and without derivative components presented similar behavior, which significantly simplified the implementation of the PLL-based inertia emulation solutions. Finally, results showed that the contribution of the BESS using VSM solutions was limited by the effect of the VSM-emulated inertia parameters on the system stability, which reduced the emulated inertia margin compared to the PLL-based solutions.

Suggested Citation

  • Andrés Peña Asensio & Francisco Gonzalez-Longatt & Santiago Arnaltes & Jose Luis Rodríguez-Amenedo, 2020. "Analysis of the Converter Synchronizing Method for the Contribution of Battery Energy Storage Systems to Inertia Emulation," Energies, MDPI, vol. 13(6), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:6:p:1478-:d:335026
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/6/1478/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/6/1478/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pradhan, Chittaranjan & Bhende, Chandrashekhar Narayan & Samanta, Anik Kumar, 2018. "Adaptive virtual inertia-based frequency regulation in wind power systems," Renewable Energy, Elsevier, vol. 115(C), pages 558-574.
    2. Lai, Chun Sing & McCulloch, Malcolm D., 2017. "Levelized cost of electricity for solar photovoltaic and electrical energy storage," Applied Energy, Elsevier, vol. 190(C), pages 191-203.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ashish Shrestha & Francisco Gonzalez-Longatt, 2021. "Frequency Stability Issues and Research Opportunities in Converter Dominated Power System," Energies, MDPI, vol. 14(14), pages 1-28, July.
    2. Miguel Cañas-Carretón & Miguel Carrión & Florin Iov, 2021. "Towards Renewable-Dominated Power Systems Considering Long-Term Uncertainties: Case Study of Las Palmas," Energies, MDPI, vol. 14(11), pages 1-38, June.
    3. Salvatore Musumeci, 2023. "Energy Conversion Using Electronic Power Converters: Technologies and Applications," Energies, MDPI, vol. 16(8), pages 1-9, April.
    4. Jesus Castro Martinez & Santiago Arnaltes & Jaime Alonso-Martinez & Jose Luis Rodriguez Amenedo, 2021. "Contribution of Wind Farms to the Stability of Power Systems with High Penetration of Renewables," Energies, MDPI, vol. 14(8), pages 1-21, April.
    5. Suparak Srita & Sakda Somkun & Tanakorn Kaewchum & Wattanapong Rakwichian & Peter Zacharias & Uthen Kamnarn & Jutturit Thongpron & Damrong Amorndechaphon & Matheepot Phattanasak, 2022. "Modeling, Simulation and Development of Grid-Connected Voltage Source Converter with Selective Harmonic Mitigation: HiL and Experimental Validations," Energies, MDPI, vol. 15(7), pages 1-28, March.
    6. Hector Beltran & Sam Harrison & Agustí Egea-Àlvarez & Lie Xu, 2020. "Techno-Economic Assessment of Energy Storage Technologies for Inertia Response and Frequency Support from Wind Farms," Energies, MDPI, vol. 13(13), pages 1-21, July.
    7. Nahid-Al Masood & Md. Nahid Haque Shazon & Hasin Mussayab Ahmed & Shohana Rahman Deeba, 2020. "Mitigation of Over-Frequency through Optimal Allocation of BESS in a Low-Inertia Power System," Energies, MDPI, vol. 13(17), pages 1-23, September.
    8. Cheng Chi & Hai Zhao & Jiahang Han, 2022. "Study on Quantitative Evaluation Index of Power System Frequency Response Capability," Energies, MDPI, vol. 15(24), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koecklin, Manuel Tong & Longoria, Genaro & Fitiwi, Desta Z. & DeCarolis, Joseph F. & Curtis, John, 2021. "Public acceptance of renewable electricity generation and transmission network developments: Insights from Ireland," Energy Policy, Elsevier, vol. 151(C).
    2. Xiangwu Yan & Xuewei Sun, 2020. "Inertia and Droop Frequency Control Strategy of Doubly-Fed Induction Generator Based on Rotor Kinetic Energy and Supercapacitor," Energies, MDPI, vol. 13(14), pages 1-19, July.
    3. Tong Koecklin, Manuel & Fitiwi, Desta & de Carolis, Joseph F. & Curtis, John, 2020. "Renewable electricity generation and transmission network developments in light of public opposition: Insights from Ireland," Papers WP653, Economic and Social Research Institute (ESRI).
    4. Fuquan Zhao & Feiqi Liu & Han Hao & Zongwei Liu, 2020. "Carbon Emission Reduction Strategy for Energy Users in China," Sustainability, MDPI, vol. 12(16), pages 1-19, August.
    5. Donovin D. Lewis & Aron Patrick & Evan S. Jones & Rosemary E. Alden & Abdullah Al Hadi & Malcolm D. McCulloch & Dan M. Ionel, 2023. "Decarbonization Analysis for Thermal Generation and Regionally Integrated Large-Scale Renewables Based on Minutely Optimal Dispatch with a Kentucky Case Study," Energies, MDPI, vol. 16(4), pages 1-23, February.
    6. Mostafavi Tehrani, S. Saeed & Shoraka, Yashar & Nithyanandam, Karthik & Taylor, Robert A., 2019. "Shell-and-tube or packed bed thermal energy storage systems integrated with a concentrated solar power: A techno-economic comparison of sensible and latent heat systems," Applied Energy, Elsevier, vol. 238(C), pages 887-910.
    7. Zhang, Yijie & Ma, Tao & Elia Campana, Pietro & Yamaguchi, Yohei & Dai, Yanjun, 2020. "A techno-economic sizing method for grid-connected household photovoltaic battery systems," Applied Energy, Elsevier, vol. 269(C).
    8. Ahsan, Syed M. & Khan, Hassan A. & Hassan, Naveed-ul & Arif, Syed M. & Lie, Tek-Tjing, 2020. "Optimized power dispatch for solar photovoltaic-storage system with multiple buildings in bilateral contracts," Applied Energy, Elsevier, vol. 273(C).
    9. Gul, Eid & Baldinelli, Giorgio & Bartocci, Pietro & Shamim, Tariq & Domenighini, Piergiovanni & Cotana, Franco & Wang, Jinwen & Fantozzi, Francesco & Bianchi, Francesco, 2023. "Transition toward net zero emissions - Integration and optimization of renewable energy sources: Solar, hydro, and biomass with the local grid station in central Italy," Renewable Energy, Elsevier, vol. 207(C), pages 672-686.
    10. Wang, Huaizhi & Liu, Yangyang & Zhou, Bin & Voropai, Nikolai & Cao, Guangzhong & Jia, Youwei & Barakhtenko, Evgeny, 2020. "Advanced adaptive frequency support scheme for DFIG under cyber uncertainty," Renewable Energy, Elsevier, vol. 161(C), pages 98-109.
    11. Lai, Chun Sing & Locatelli, Giorgio, 2021. "Economic and financial appraisal of novel large-scale energy storage technologies," Energy, Elsevier, vol. 214(C).
    12. Ga-Eun Jung & Hae-Jin Sung & Minh-Chau Dinh & Minwon Park & Hyunkyoung Shin, 2021. "A Comparative Analysis of Economics of PMSG and SCSG Floating Offshore Wind Farms," Energies, MDPI, vol. 14(5), pages 1-18, March.
    13. Zhong, Like & Yao, Erren & Zou, Hansen & Xi, Guang, 2022. "Thermodynamic and economic analysis of a directly solar-driven power-to-methane system by detailed distributed parameter method," Applied Energy, Elsevier, vol. 312(C).
    14. Chen, Huadong & Wang, Can & Cai, Wenjia & Wang, Jianhui, 2018. "Simulating the impact of investment preference on low-carbon transition in power sector," Applied Energy, Elsevier, vol. 217(C), pages 440-455.
    15. Ioannis E. Kosmadakis & Costas Elmasides, 2021. "A Sizing Method for PV–Battery–Generator Systems for Off-Grid Applications Based on the LCOE," Energies, MDPI, vol. 14(7), pages 1-29, April.
    16. Gul, Eid & Baldinelli, Giorgio & Bartocci, Pietro & Bianchi, Francesco & Domenghini, Piergiovanni & Cotana, Franco & Wang, Jinwen, 2022. "A techno-economic analysis of a solar PV and DC battery storage system for a community energy sharing," Energy, Elsevier, vol. 244(PB).
    17. Joshua M. Pearce & Nelson Sommerfeldt, 2021. "Economics of Grid-Tied Solar Photovoltaic Systems Coupled to Heat Pumps: The Case of Northern Climates of the U.S. and Canada," Energies, MDPI, vol. 14(4), pages 1-17, February.
    18. Shuxin Mao & Sha Qiu & Tao Li & Mingfang Tang & Hongbing Deng & Hua Zheng, 2020. "Using Characteristic Energy to Study Rural Ethnic Minorities’ Household Energy Consumption and Its Impact Factors in Chongqing, China," Sustainability, MDPI, vol. 12(17), pages 1-14, August.
    19. Hua Li & Xudong Li & Weichen Xiong & Yichen Yan & Yuanhang Zhang & Peng Kou, 2023. "Cooperative Voltage and Frequency Regulation with Wind Farm: A Model-Based Offline Optimal Control Approach," Energies, MDPI, vol. 16(17), pages 1-19, August.
    20. Gonzalez-Moreno, A. & Marcos, J. & de la Parra, I. & Marroyo, L., 2022. "A PV ramp-rate control strategy to extend battery lifespan using forecasting," Applied Energy, Elsevier, vol. 323(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:6:p:1478-:d:335026. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.