IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i6p1305-d331317.html
   My bibliography  Save this article

Membrane Capacitive Deionization for Cooling Water Intake Reduction in Thermal Power Plants: Lab to Pilot Scale Evaluation

Author

Listed:
  • Wim De Schepper

    (VITO nv, Boeretang 200, 2400 Mol, Belgium)

  • Christophe Vanschepdael

    (ENGIE Lab, Rodestraat 125, 1630 Linkebeek, Belgium)

  • Han Huynh

    (ENGIE Lab, Rodestraat 125, 1630 Linkebeek, Belgium)

  • Joost Helsen

    (VITO nv, Boeretang 200, 2400 Mol, Belgium)

Abstract

Cooling of thermal power stations requires large amounts of surface water and contributes to the increasing pressure on water resources. Water use efficiency of recirculating cooling towers (CT) is often kept low to prevent scaling. Partial desalination of CT feed water with membrane capacitive deionization (MDCI) can improve water quality but also results in additional water loss. A response surface methodology is presented in which optimal process conditions of the MCDI-CT system are determined in view of water use efficiency and cost. Maximal water use efficiency at minimal cost is found for high adsorption current (2.5 A) and short adsorption time (900 s). Estimated cost for MCDI to realize maximal MCDI-CT water use efficiency is relatively high (2.0–3.1 € m −3 evap ), which limits applicability to plants facing high intake water costs or water uptake limitations. MCDI-CT pilot tests show that water use efficiency strongly depends on CT operational pH. To allow comparison among pilot test runs, simulation software is used to recalculate CaCO 3 scaling and acid dosage for equal operational pH. Comparison at equal pH shows that MCDI technology allows a clear reduction of CT water consumption (74%–80%) and acid dosage (63%–80%) at pH 8.5.

Suggested Citation

  • Wim De Schepper & Christophe Vanschepdael & Han Huynh & Joost Helsen, 2020. "Membrane Capacitive Deionization for Cooling Water Intake Reduction in Thermal Power Plants: Lab to Pilot Scale Evaluation," Energies, MDPI, vol. 13(6), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:6:p:1305-:d:331317
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/6/1305/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/6/1305/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Raptis, Catherine E. & Pfister, Stephan, 2016. "Global freshwater thermal emissions from steam-electric power plants with once-through cooling systems," Energy, Elsevier, vol. 97(C), pages 46-57.
    2. Peer, Rebecca A.M. & Sanders, Kelly T., 2018. "The water consequences of a transitioning US power sector," Applied Energy, Elsevier, vol. 210(C), pages 613-622.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krarti, Moncef & Aldubyan, Mohammad, 2021. "Mitigation analysis of water consumption for power generation and air conditioning of residential buildings: Case study of Saudi Arabia," Applied Energy, Elsevier, vol. 290(C).
    2. O'Connell, & Voisin, Nathalie & Macknick, & Fu,, 2019. "Sensitivity of Western U.S. power system dynamics to droughts compounded with fuel price variability," Applied Energy, Elsevier, vol. 247(C), pages 745-754.
    3. Lv, J. & Li, Y.P. & Huang, G.H. & Suo, C. & Mei, H. & Li, Y., 2020. "Quantifying the impact of water availability on China's energy system under uncertainties: A perceptive of energy-water nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    4. Jin, Yi & Behrens, Paul & Tukker, Arnold & Scherer, Laura, 2019. "Water use of electricity technologies: A global meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    5. Escalante, Edwin Santiago Rios & Balestieri, José Antônio Perrella & de Carvalho, João Andrade, 2022. "The organic Rankine cycle: A promising technology for electricity generation and thermal pollution mitigation," Energy, Elsevier, vol. 247(C).
    6. Guohua Fan & Baodeng Hou & Xinsheng Dong & Xiaowen Ding, 2021. "Technical Points of Water-Draw and Discharge Impact Analysis in Guidelines for Water Resource Assessment of Coastal Nuclear Power Plants," Sustainability, MDPI, vol. 13(11), pages 1-14, June.
    7. Gonzalez Sanchez, Rocio & Seliger, Roman & Fahl, Fernando & De Felice, Luca & Ouarda, Taha B.M.J. & Farinosi, Fabio, 2020. "Freshwater use of the energy sector in Africa," Applied Energy, Elsevier, vol. 270(C).
    8. Aili, Ablimit & Zhao, Dongliang & Tan, Gang & Yin, Xiaobo & Yang, Ronggui, 2021. "Reduction of water consumption in thermal power plants with radiative sky cooling," Applied Energy, Elsevier, vol. 302(C).
    9. Chini, Christopher M. & Stillwell, Ashlynn S., 2020. "The changing virtual water trade network of the European electric grid," Applied Energy, Elsevier, vol. 260(C).
    10. Elena Helerea & Marius D. Calin & Cristian Musuroi, 2023. "Water Energy Nexus and Energy Transition—A Review," Energies, MDPI, vol. 16(4), pages 1-31, February.
    11. Bolorinos, Jose & Yu, Yang & Ajami, Newsha K. & Rajagopal, Ram, 2018. "Balancing marine ecosystem impact and freshwater consumption with water-use fees in California’s power markets: An evaluation of possibilities and trade-offs," Applied Energy, Elsevier, vol. 226(C), pages 644-654.
    12. Logan, Lauren H. & Gupta, Rohini S. & Ando, Amy & Suski, Cory & Stillwell, Ashlynn S., 2021. "Quantifying tradeoffs between electricity generation and fish populations via population habitat duration curves," Ecological Modelling, Elsevier, vol. 440(C).
    13. Zhai, Haibo & Rubin, Edward S. & Grol, Eric J. & O'Connell, Andrew C. & Wu, Zitao & Lewis, Eric G., 2022. "Dry cooling retrofits at existing fossil fuel-fired power plants in a water-stressed region: Tradeoffs in water savings, cost, and capacity shortfalls," Applied Energy, Elsevier, vol. 306(PA).
    14. Alkon, Meir & He, Xiaogang & Paris, Aubrey R. & Liao, Wenying & Hodson, Thomas & Wanders, Niko & Wang, Yaoping, 2019. "Water security implications of coal-fired power plants financed through China's Belt and Road Initiative," Energy Policy, Elsevier, vol. 132(C), pages 1101-1109.
    15. Jamil, Ahmad & Javed, Adeel & Wajid, Abdul & Zeb, Muhammad Omar & Ali, Majid & Khoja, Asif Hussain & Imran, Muhammad, 2021. "Multiparametric optimization for reduced condenser cooling water consumption in a degraded combined cycle gas turbine power plant from a water-energy nexus perspective," Applied Energy, Elsevier, vol. 304(C).
    16. Guerras, Lidia S. & Martín, Mariano, 2020. "On the water footprint in power production: Sustainable design of wet cooling towers," Applied Energy, Elsevier, vol. 263(C).
    17. Payet-Burin, Raphael & Bertoni, Federica & Davidsen, Claus & Bauer-Gottwein, Peter, 2018. "Optimization of regional water - power systems under cooling constraints and climate change," Energy, Elsevier, vol. 155(C), pages 484-494.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:6:p:1305-:d:331317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.