IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i5p1195-d328752.html
   My bibliography  Save this article

Design of a Robust Adaptive Controller for the Pitch and Torque Control of Wind Turbines

Author

Listed:
  • Srikanth Bashetty

    (Frank H. Dotterweich College of Engineering, Texas A&M University Kingsville, Kingsville, TX 78363, USA)

  • Joaquin I. Guillamon

    (Frank H. Dotterweich College of Engineering, Texas A&M University Kingsville, Kingsville, TX 78363, USA)

  • Shanmukha S. Mutnuri

    (Frank H. Dotterweich College of Engineering, Texas A&M University Kingsville, Kingsville, TX 78363, USA)

  • Selahattin Ozcelik

    (Frank H. Dotterweich College of Engineering, Texas A&M University Kingsville, Kingsville, TX 78363, USA)

Abstract

In this paper, robust adaptive control is designed for pitch and torque control of the wind turbines operating under turbulent wind conditions. The dynamics of the wind turbine are formulated by considering the five degrees of freedom system (rotor angle, gearbox angle, generator angle, flap-wise deflection of the rotor blade, and axial displacement of the nacelle). The controller is designed to maintain the rotor speed, maximize the aerodynamic efficiency of the wind turbine, and reduce the loads due to high wind speeds. Gaussian probability distribution function is used for approximating the wind speed, which is given as the disturbance input to the plant. The adaptive control algorithm is implemented to 2 MW and 5 MW wind turbines to test the robustness of the controller for varying parameters. The simulation is carried out using MATLAB/Simulink for three cases, namely pitch control, torque control, and the combined case. A case study is done to validate the proposed adaptive control using real wind speed data. In all the cases, the results indicate that the rotor speed follows the reference speed and show that the designed controller gives a satisfactory performance under varying operating conditions and parameter variations.

Suggested Citation

  • Srikanth Bashetty & Joaquin I. Guillamon & Shanmukha S. Mutnuri & Selahattin Ozcelik, 2020. "Design of a Robust Adaptive Controller for the Pitch and Torque Control of Wind Turbines," Energies, MDPI, vol. 13(5), pages 1-22, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1195-:d:328752
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/5/1195/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/5/1195/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yancai Xiao & Yi Hong & Xiuhai Chen & Wenjian Huo, 2016. "Switching Control of Wind Turbine Sub-Controllers Based on an Active Disturbance Rejection Technique," Energies, MDPI, vol. 9(10), pages 1-19, October.
    2. Yuan, Yuan & Tang, J., 2017. "Adaptive pitch control of wind turbine for load mitigation under structural uncertainties," Renewable Energy, Elsevier, vol. 105(C), pages 483-494.
    3. Aksoy, Hafzullah & Fuat Toprak, Z & Aytek, Ali & Erdem Ünal, N, 2004. "Stochastic generation of hourly mean wind speed data," Renewable Energy, Elsevier, vol. 29(14), pages 2111-2131.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amira Elkodama & Amr Ismaiel & A. Abdellatif & S. Shaaban & Shigeo Yoshida & Mostafa A. Rushdi, 2023. "Control Methods for Horizontal Axis Wind Turbines (HAWT): State-of-the-Art Review," Energies, MDPI, vol. 16(17), pages 1-32, September.
    2. Srikanth Bashetty & Selahattin Ozcelik, 2021. "Review on Dynamics of Offshore Floating Wind Turbine Platforms," Energies, MDPI, vol. 14(19), pages 1-30, September.
    3. José Antonio Cortajarena & Oscar Barambones & Patxi Alkorta & Jon Cortajarena, 2021. "Grid Frequency and Amplitude Control Using DFIG Wind Turbines in a Smart Grid," Mathematics, MDPI, vol. 9(2), pages 1-18, January.
    4. Md Rasel Sarkar & Sabariah Julai & Chong Wen Tong & Moslem Uddin & M.F. Romlie & GM Shafiullah, 2020. "Hybrid Pitch Angle Controller Approaches for Stable Wind Turbine Power under Variable Wind Speed," Energies, MDPI, vol. 13(14), pages 1-19, July.
    5. Xingkang Jin & Wen Tan & Yarong Zou & Zijian Wang, 2022. "Active Disturbance Rejection Control for Wind Turbine Fatigue Load," Energies, MDPI, vol. 15(17), pages 1-15, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salami, Akim Adekunle & Ajavon, Ayite Senah Akoda & Kodjo, Mawugno Koffi & Bedja, Koffi-Sa, 2013. "Contribution to improving the modeling of wind and evaluation of the wind potential of the site of Lome: Problems of taking into account the frequency of calm winds," Renewable Energy, Elsevier, vol. 50(C), pages 449-455.
    2. Truong, Hoai Vu Anh & Dang, Tri Dung & Vo, Cong Phat & Ahn, Kyoung Kwan, 2022. "Active control strategies for system enhancement and load mitigation of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    3. Joselin Herbert, G.M. & Iniyan, S. & Sreevalsan, E. & Rajapandian, S., 2007. "A review of wind energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1117-1145, August.
    4. Cabello, M. & Orza, J.A.G., 2010. "Wind speed analysis in the province of Alicante, Spain. Potential for small-scale wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3185-3191, December.
    5. Azizi, Askar & Nourisola, Hamid & Shoja-Majidabad, Sajjad, 2019. "Fault tolerant control of wind turbines with an adaptive output feedback sliding mode controller," Renewable Energy, Elsevier, vol. 135(C), pages 55-65.
    6. Andreas Wagner, 2014. "Residual Demand Modeling and Application to Electricity Pricing," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    7. Kulwinder Parmar & Rashmi Bhardwaj, 2015. "River Water Prediction Modeling Using Neural Networks, Fuzzy and Wavelet Coupled Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(1), pages 17-33, January.
    8. Yuan, Yuan & Chen, Xu & Tang, J., 2020. "Multivariable robust blade pitch control design to reject periodic loads on wind turbines," Renewable Energy, Elsevier, vol. 146(C), pages 329-341.
    9. Carta, J.A. & Ramírez, P. & Velázquez, S., 2009. "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 933-955, June.
    10. I. Bremer & R. Henrion & A. Möller, 2015. "Probabilistic constraints via SQP solver: application to a renewable energy management problem," Computational Management Science, Springer, vol. 12(3), pages 435-459, July.
    11. Zhou, Zhiyong & Qin, Weiyang & Zhu, Pei & Shang, Shijie, 2018. "Scavenging wind energy by a Y-shaped bi-stable energy harvester with curved wings," Energy, Elsevier, vol. 153(C), pages 400-412.
    12. Srikanth Bashetty & Selahattin Ozcelik, 2021. "Review on Dynamics of Offshore Floating Wind Turbine Platforms," Energies, MDPI, vol. 14(19), pages 1-30, September.
    13. Kaman Thapa Magar & Mark Balas & Susan Frost & Nailu Li, 2017. "Adaptive State Feedback—Theory and Application for Wind Turbine Control," Energies, MDPI, vol. 10(12), pages 1-15, December.
    14. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    15. Bo Liu & Hongqi Ben & Xiaobing Zhang, 2018. "Large-Signal Stabilization of Three-Phase VSR with Constant Power Load," Energies, MDPI, vol. 11(7), pages 1-14, July.
    16. Xiaodong Li & Xiang Song & Djamila Ouelhadj, 2023. "A Cost Optimisation Model for Maintenance Planning in Offshore Wind Farms with Wind Speed Dependent Failure Rates," Mathematics, MDPI, vol. 11(13), pages 1-21, June.
    17. Li, Jinhua & Li, Chunxiang & He, Liang & Shen, Jianhong, 2015. "Extended modulating functions for simulation of wind velocities with weak and strong nonstationarity," Renewable Energy, Elsevier, vol. 83(C), pages 384-397.
    18. Yuan, Shengxi & Kocaman, Ayse Selin & Modi, Vijay, 2017. "Benefits of forecasting and energy storage in isolated grids with large wind penetration – The case of Sao Vicente," Renewable Energy, Elsevier, vol. 105(C), pages 167-174.
    19. Dai, Juchuan & Li, Mimi & Chen, Huanguo & He, Tao & Zhang, Fan, 2022. "Progress and challenges on blade load research of large-scale wind turbines," Renewable Energy, Elsevier, vol. 196(C), pages 482-496.
    20. Leonardo Acho, 2019. "A Proportional Plus a Hysteretic Term Control Design: A Throttle Experimental Emulation to Wind Turbines Pitch Control," Energies, MDPI, vol. 12(10), pages 1-14, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1195-:d:328752. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.