IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i22p6110-d448968.html
   My bibliography  Save this article

Methodology for Comprehensive Comparison of Energy Harvesting Shock Absorber Systems

Author

Listed:
  • Carlos Gijón-Rivera

    (Industrial Engineering and Automotive Department, Universidad de Nebrija, Campus de la Dehesa de la Villa, Calle Pirineos, 55, 28040 Madrid, Spain
    Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey NL 64849, Mexico)

  • José Luis Olazagoitia

    (Industrial Engineering and Automotive Department, Universidad de Nebrija, Campus de la Dehesa de la Villa, Calle Pirineos, 55, 28040 Madrid, Spain)

Abstract

In recent years, there has been a lot of work related to Energy Harvesting Shock Absorbers (EHSA). These devices harvest energy from the movement of the vehicle’s shock absorbers caused by road roughness, braking, acceleration and turning. There are different technologies that can be used in these systems, but it is not clear which would be the best option if you want to replace a conventional shock absorber with an EHSA. This article presents a methodology to compare the performance of different EHSA technologies that can replace a shock absorber with a given damping coefficient. The methodology allows to include different analysis options, including different types of driving cycles, computer vehicle models, input signals and road types. The article tests the methodology in selecting the optimal EHSA technology for a particular shock absorber and vehicle, optimizing at the same time energy recovery. In addition, a study of parameters in each type of technology is included to analyze its influence on the final objective. In the example analyzed, the EHSA technology with a rack and pinion system turned out to be the best. The proposed methodology can be extrapolated to other case studies and design objectives.

Suggested Citation

  • Carlos Gijón-Rivera & José Luis Olazagoitia, 2020. "Methodology for Comprehensive Comparison of Energy Harvesting Shock Absorber Systems," Energies, MDPI, vol. 13(22), pages 1-25, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:6110-:d:448968
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/22/6110/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/22/6110/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abdelkareem, Mohamed A.A. & Xu, Lin & Ali, Mohamed Kamal Ahmed & El-Daly, Abdel-Rahman B.M. & Hassan, Mohamed A. & Elagouz, Ahmed & Bo, Yang, 2019. "Analysis of the prospective vibrational energy harvesting of heavy-duty truck suspensions: A simulation approach," Energy, Elsevier, vol. 173(C), pages 332-351.
    2. Zhang, Zutao & Zhang, Xingtian & Chen, Weiwu & Rasim, Yagubov & Salman, Waleed & Pan, Hongye & Yuan, Yanping & Wang, Chunbai, 2016. "A high-efficiency energy regenerative shock absorber using supercapacitors for renewable energy applications in range extended electric vehicle," Applied Energy, Elsevier, vol. 178(C), pages 177-188.
    3. Wei, Chongfeng & Taghavifar, Hamid, 2017. "A novel approach to energy harvesting from vehicle suspension system: Half-vehicle model," Energy, Elsevier, vol. 134(C), pages 279-288.
    4. Zhang, Yuxin & Guo, Konghui & Wang, Dai & Chen, Chao & Li, Xuefei, 2017. "Energy conversion mechanism and regenerative potential of vehicle suspensions," Energy, Elsevier, vol. 119(C), pages 961-970.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing Li & Peiben Wang & Yuewen Gao & Dong Guan & Shengquan Li, 2022. "Quantitative Power Flow Characterization of Energy Harvesting Shock Absorbers by Considering Motion Bifurcation," Energies, MDPI, vol. 15(19), pages 1-21, September.
    2. Jacek Caban & Jan Vrabel & Dorota Górnicka & Radosław Nowak & Maciej Jankiewicz & Jonas Matijošius & Marek Palka, 2023. "Overview of Energy Harvesting Technologies Used in Road Vehicles," Energies, MDPI, vol. 16(9), pages 1-32, April.
    3. Marius Minea & Cătălin Marian Dumitrescu, 2022. "On the Feasibility and Efficiency of Self-Powered Green Intelligent Highways," Energies, MDPI, vol. 15(13), pages 1-32, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Ran & Yan, Mingyin & Sun, Feng & Jin, Junjie & Li, Qiang & Xu, Fangchao & Zhang, Ming & Zhang, Xiaoyou & Nakano, Kimihiko, 2022. "Experimental validations of a magnetic energy-harvesting suspension and its potential application for self-powered sensing," Energy, Elsevier, vol. 239(PC).
    2. Li, Shiying & Xu, Jun & Pu, Xiaohui & Tao, Tao & Gao, Haonan & Mei, Xuesong, 2019. "Energy-harvesting variable/constant damping suspension system with motor based electromagnetic damper," Energy, Elsevier, vol. 189(C).
    3. Abdelkareem, Mohamed A.A. & Xu, Lin & Ali, Mohamed Kamal Ahmed & El-Daly, Abdel-Rahman B.M. & Hassan, Mohamed A. & Elagouz, Ahmed & Bo, Yang, 2019. "Analysis of the prospective vibrational energy harvesting of heavy-duty truck suspensions: A simulation approach," Energy, Elsevier, vol. 173(C), pages 332-351.
    4. Chen, Shi-An & Jiang, Xu-Dong & Yao, Ming & Jiang, Shun-Ming & Chen, Jinzhou & Wang, Ya-Xiong, 2020. "A dual vibration reduction structure-based self-powered active suspension system with PMSM-ball screw actuator via an improved H2/H∞ control," Energy, Elsevier, vol. 201(C).
    5. Li, Shiying & Xu, Jun & Gao, Haonan & Tao, Tao & Mei, Xuesong, 2020. "Safety probability based multi-objective optimization of energy-harvesting suspension system," Energy, Elsevier, vol. 209(C).
    6. Xueying Lv & Yanju Ji & Huanyu Zhao & Jiabao Zhang & Guanyu Zhang & Liu Zhang, 2020. "Research Review of a Vehicle Energy-Regenerative Suspension System," Energies, MDPI, vol. 13(2), pages 1-14, January.
    7. Cai, Qinlin & Zhu, Songye, 2022. "The nexus between vibration-based energy harvesting and structural vibration control: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    8. Abdelkareem, Mohamed A.A. & Xu, Lin & Ali, Mohamed Kamal Ahmed & Elagouz, Ahmed & Mi, Jia & Guo, Sijing & Liu, Yilun & Zuo, Lei, 2018. "Vibration energy harvesting in automotive suspension system: A detailed review," Applied Energy, Elsevier, vol. 229(C), pages 672-699.
    9. Abdelkareem, Mohamed A.A. & Zhang, Ran & Jing, Xingjian & Wang, Xu & Ali, Mohamed Kamal Ahmed, 2022. "Characterization and implementation of a double-sided arm-toothed indirect-drive rotary electromagnetic energy-harvesting shock absorber in a full semi-trailer truck suspension platform," Energy, Elsevier, vol. 239(PA).
    10. Lafarge, Barbara & Grondel, Sébastien & Delebarre, Christophe & Curea, Octavian & Richard, Claude, 2021. "Linear electromagnetic energy harvester system embedded on a vehicle suspension: From modeling to performance analysis," Energy, Elsevier, vol. 225(C).
    11. Luo, Rongkang & Yu, Zhihao & Wu, Peibao & Hou, Zhichao, 2023. "Analytical solutions of the energy harvesting potential from vehicle vertical vibration based on statistical energy conservation," Energy, Elsevier, vol. 264(C).
    12. Zhang, Yuxin & Chen, Hong & Guo, Konghui & Zhang, Xinjie & Eben Li, Shengbo, 2017. "Electro-hydraulic damper for energy harvesting suspension: Modeling, prototyping and experimental validation," Applied Energy, Elsevier, vol. 199(C), pages 1-12.
    13. Zhang, Weijie & Wang, Guosheng & Guo, Yong, 2023. "Research on damping and energy recovery characteristics of a novel mechanical-electrical-hydraulic regenerative suspension system," Energy, Elsevier, vol. 271(C).
    14. Pan, Hongye & Qi, Lingfei & Zhang, Zutao & Yan, Jinyue, 2021. "Kinetic energy harvesting technologies for applications in land transportation: A comprehensive review," Applied Energy, Elsevier, vol. 286(C).
    15. Salman, Waleed & Qi, Lingfei & Zhu, Xin & Pan, Hongye & Zhang, Xingtian & Bano, Shehar & Zhang, Zutao & Yuan, Yanping, 2018. "A high-efficiency energy regenerative shock absorber using helical gears for powering low-wattage electrical device of electric vehicles," Energy, Elsevier, vol. 159(C), pages 361-372.
    16. Haris, Muhammad & Hasan, Muhammad Noman & Qin, Shiyin, 2021. "Early and robust remaining useful life prediction of supercapacitors using BOHB optimized Deep Belief Network," Applied Energy, Elsevier, vol. 286(C).
    17. Li, Hai & Zheng, Peng & Zhang, Tingsheng & Zou, Yingquan & Pan, Yajia & Zhang, Zutao & Azam, Ali, 2021. "A high-efficiency energy regenerative shock absorber for powering auxiliary devices of new energy driverless buses," Applied Energy, Elsevier, vol. 295(C).
    18. Kuzmenkov, D.M. & Delov, M.I. & Zeynalyan, K. & Struchalin, P.G. & Alyaev, S. & He, Y. & Kutsenko, K.V. & Balakin, B.V., 2020. "Solar steam generation in fine dispersions of graphite particles," Renewable Energy, Elsevier, vol. 161(C), pages 265-277.
    19. Doaa Al-Yafeai & Tariq Darabseh & Abdel-Hamid I. Mourad, 2020. "A State-Of-The-Art Review of Car Suspension-Based Piezoelectric Energy Harvesting Systems," Energies, MDPI, vol. 13(9), pages 1-39, May.
    20. Zhang, Ran & Zhao, Liya & Qiu, Xiaojun & Zhang, Hui & Wang, Xu, 2020. "A comprehensive comparison of the vehicle vibration energy harvesting abilities of the regenerative shock absorbers predicted by the quarter, half and full vehicle suspension system models," Applied Energy, Elsevier, vol. 272(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:6110-:d:448968. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.