IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i22p6103-d448949.html
   My bibliography  Save this article

Load Frequency Control of Photovoltaic Generation-Integrated Multi-Area Interconnected Power Systems Based on Double Equivalent-Input-Disturbance Controllers

Author

Listed:
  • Minghui Yang

    (School of Automation, Central South University, Changsha 410083, China
    Hunan Xiangjiang Artificial Intelligence Academy, Changsha 410083, China)

  • Chunsheng Wang

    (School of Automation, Central South University, Changsha 410083, China
    Hunan Xiangjiang Artificial Intelligence Academy, Changsha 410083, China)

  • Yukun Hu

    (Department of Civil, Environment & Geomatic Engineering, University College London, London WC1E 6BT, UK)

  • Zijian Liu

    (School of Automation, Central South University, Changsha 410083, China
    Hunan Xiangjiang Artificial Intelligence Academy, Changsha 410083, China)

  • Caixin Yan

    (School of Automation, Central South University, Changsha 410083, China
    Hunan Xiangjiang Artificial Intelligence Academy, Changsha 410083, China)

  • Shuhang He

    (School of Automation, Central South University, Changsha 410083, China
    Hunan Xiangjiang Artificial Intelligence Academy, Changsha 410083, China)

Abstract

With the rapid increase of photovoltaic (PV) penetration and distributed grid access, photovoltaic generation (PVG)-integrated multi-area power systems may be disturbed by more uncertain factors, such as PVG, grid-tie inverter parameters, and resonance. These uncertain factors will exacerbate the frequency fluctuations of PVG integrated multi-area interconnected power systems. For such system, this paper proposes a load frequency control (LFC) strategy based on double equivalent-input-disturbance (EID) controllers. The PVG linear model and the multi-area interconnected power system linear model were established, respectively, and the disturbances were caused by grid voltage fluctuations in PVG subsystem and PV output power fluctuation and load change in multi-area interconnected power system. In PVG subsystems and multi-area interconnected power systems, two EID controllers add differently estimated equivalent system disturbances, which has the same effect as the actual disturbance, to the input channel to compensate for the impact of actual disturbances. The simulation results in MATLAB/Simulink show that the frequency deviation range of the proposed double EID method is 6% of FA-PI method and 7% of conventional PI method, respectively, when the grid voltage fluctuation and load disturbance exist. The double EID method can better compensate for the effects of external disturbances, suppress frequency fluctuations, and make the system more stable.

Suggested Citation

  • Minghui Yang & Chunsheng Wang & Yukun Hu & Zijian Liu & Caixin Yan & Shuhang He, 2020. "Load Frequency Control of Photovoltaic Generation-Integrated Multi-Area Interconnected Power Systems Based on Double Equivalent-Input-Disturbance Controllers," Energies, MDPI, vol. 13(22), pages 1-19, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:6103-:d:448949
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/22/6103/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/22/6103/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guo-Qiang Zeng & Xiao-Qing Xie & Min-Rong Chen, 2017. "An Adaptive Model Predictive Load Frequency Control Method for Multi-Area Interconnected Power Systems with Photovoltaic Generations," Energies, MDPI, vol. 10(11), pages 1-23, November.
    2. Sa-ngawong, Nattapol & Ngamroo, Issarachai, 2015. "Intelligent photovoltaic farms for robust frequency stabilization in multi-area interconnected power system based on PSO-based optimal Sugeno fuzzy logic control," Renewable Energy, Elsevier, vol. 74(C), pages 555-567.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sadeq D. Al-Majidi & Mohammed Kh. AL-Nussairi & Ali Jasim Mohammed & Adel Manaa Dakhil & Maysam F. Abbod & Hamed S. Al-Raweshidy, 2022. "Design of a Load Frequency Controller Based on an Optimal Neural Network," Energies, MDPI, vol. 15(17), pages 1-28, August.
    2. Iván Pazmiño & Sergio Martinez & Danny Ochoa, 2021. "Analysis of Control Strategies Based on Virtual Inertia for the Improvement of Frequency Stability in an Islanded Grid with Wind Generators and Battery Energy Storage Systems," Energies, MDPI, vol. 14(3), pages 1-18, January.
    3. Sadeq D. Al-Majidi & Hisham Dawood Salman Altai & Mohammed H. Lazim & Mohammed Kh. Al-Nussairi & Maysam F. Abbod & Hamed S. Al-Raweshidy, 2023. "Bacterial Foraging Algorithm for a Neural Network Learning Improvement in an Automatic Generation Controller," Energies, MDPI, vol. 16(6), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaleem Ullah & Abdul Basit & Zahid Ullah & Sheraz Aslam & Herodotos Herodotou, 2021. "Automatic Generation Control Strategies in Conventional and Modern Power Systems: A Comprehensive Overview," Energies, MDPI, vol. 14(9), pages 1-43, April.
    2. Ana Fernández-Guillamón & Antonio Vigueras-Rodríguez & Emilio Gómez-Lázaro & Ángel Molina-García, 2018. "Fast Power Reserve Emulation Strategy for VSWT Supporting Frequency Control in Multi-Area Power Systems," Energies, MDPI, vol. 11(10), pages 1-20, October.
    3. Mahmut Temel ÖZDEMİR & Dursun ÖZTÜRK, 2017. "Comparative Performance Analysis of Optimal PID Parameters Tuning Based on the Optics Inspired Optimization Methods for Automatic Generation Control," Energies, MDPI, vol. 10(12), pages 1-19, December.
    4. Ali Dokht Shakibjoo & Mohammad Moradzadeh & Seyed Zeinolabedin Moussavi & Lieven Vandevelde, 2020. "A Novel Technique for Load Frequency Control of Multi-Area Power Systems," Energies, MDPI, vol. 13(9), pages 1-19, April.
    5. Guo, Wencheng & Yang, Jiandong, 2018. "Dynamic performance analysis of hydro-turbine governing system considering combined effect of downstream surge tank and sloping ceiling tailrace tunnel," Renewable Energy, Elsevier, vol. 129(PA), pages 638-651.
    6. Masoud Babaei & Ahmadreza Abazari & S. M. Muyeen, 2020. "Coordination between Demand Response Programming and Learning-Based FOPID Controller for Alleviation of Frequency Excursion of Hybrid Microgrid," Energies, MDPI, vol. 13(2), pages 1-23, January.
    7. Suganthi, L. & Iniyan, S. & Samuel, Anand A., 2015. "Applications of fuzzy logic in renewable energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 585-607.
    8. Musong L. Katche & Augustine B. Makokha & Siagi O. Zachary & Muyiwa S. Adaramola, 2023. "A Comprehensive Review of Maximum Power Point Tracking (MPPT) Techniques Used in Solar PV Systems," Energies, MDPI, vol. 16(5), pages 1-23, February.
    9. Mohammed Elsayed Lotfy & Tomonobu Senjyu & Mohammed Abdel-Fattah Farahat & Amal Farouq Abdel-Gawad & Hidehito Matayoshi, 2017. "A Polar Fuzzy Control Scheme for Hybrid Power System Using Vehicle-To-Grid Technique," Energies, MDPI, vol. 10(8), pages 1-25, July.
    10. Yuemin Zheng & Jin Tao & Hao Sun & Qinglin Sun & Zengqiang Chen & Matthias Dehmer & Quan Zhou, 2021. "Load Frequency Active Disturbance Rejection Control for Multi-Source Power System Based on Soft Actor-Critic," Energies, MDPI, vol. 14(16), pages 1-17, August.
    11. Dileep, G. & Singh, S.N., 2015. "Maximum power point tracking of solar photovoltaic system using modified perturbation and observation method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 109-129.
    12. Arya, Yogendra, 2019. "AGC of PV-thermal and hydro-thermal power systems using CES and a new multi-stage FPIDF-(1+PI) controller," Renewable Energy, Elsevier, vol. 134(C), pages 796-806.
    13. Jose Roberto Razo-Hernandez & Ismael Urbina-Salas & Guillermo Tapia-Tinoco & Juan Pablo Amezquita-Sanchez & Martin Valtierra-Rodriguez & David Granados-Lieberman, 2020. "Improved Performance of M-Class PMUs Based on a Magnitude Compensation Model for Wide Frequency Deviations," Mathematics, MDPI, vol. 8(8), pages 1-21, August.
    14. Komboigo Charles & Naomitsu Urasaki & Tomonobu Senjyu & Mohammed Elsayed Lotfy & Lei Liu, 2018. "Robust Load Frequency Control Schemes in Power System Using Optimized PID and Model Predictive Controllers," Energies, MDPI, vol. 11(11), pages 1-18, November.
    15. Han, Xiaojuan & Liang, Yubo & Ai, Yaoyao & Li, Jianlin, 2018. "Economic evaluation of a PV combined energy storage charging station based on cost estimation of second-use batteries," Energy, Elsevier, vol. 165(PA), pages 326-339.
    16. Arman Oshnoei & Rahmat Khezri & S. M. Muyeen, 2019. "Model Predictive-Based Secondary Frequency Control Considering Heat Pump Water Heaters," Energies, MDPI, vol. 12(3), pages 1-18, January.
    17. Debanjan, Mukherjee & Karuna, Kalita, 2022. "An Overview of Renewable Energy Scenario in India and its Impact on Grid Inertia and Frequency Response," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    18. Van Van Huynh & Phong Thanh Tran & Bui Le Ngoc Minh & Anh Tuan Tran & Dao Huy Tuan & Tam Minh Nguyen & Phan-Tu Vu, 2020. "New Second-Order Sliding Mode Control Design for Load Frequency Control of a Power System," Energies, MDPI, vol. 13(24), pages 1-21, December.
    19. Latif, Abdul & Hussain, S.M. Suhail & Das, Dulal Chandra & Ustun, Taha Selim, 2020. "State-of-the-art of controllers and soft computing techniques for regulated load frequency management of single/multi-area traditional and renewable energy based power systems," Applied Energy, Elsevier, vol. 266(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:6103-:d:448949. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.