IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i24p6509-d459496.html
   My bibliography  Save this article

New Second-Order Sliding Mode Control Design for Load Frequency Control of a Power System

Author

Listed:
  • Van Van Huynh

    (Faculty of Electrical & Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam)

  • Phong Thanh Tran

    (Faculty of Electrical & Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam)

  • Bui Le Ngoc Minh

    (Faculty of Electrical and Electronics Engineering, Ho Chi Minh City University of Technology and Education, Ho Chi Minh City 700000, Vietnam)

  • Anh Tuan Tran

    (Faculty of Electrical & Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam)

  • Dao Huy Tuan

    (Faculty of Electrical & Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam)

  • Tam Minh Nguyen

    (Faculty of Electrical and Electronics Engineering, Ho Chi Minh City University of Technology and Education, Ho Chi Minh City 700000, Vietnam)

  • Phan-Tu Vu

    (Department of Power Systems of Ho Chi Minh City University of Technology, Vietnam National University, Ho Chi Minh City 700000, Vietnam)

Abstract

The implementation of the sliding mode control (SMC) for load frequency control of power networks becomes difficult due to the chattering phenomenon of high-frequency switching. This chattering problem in SMC is extremely dangerous for actuators used in power systems. In this paper, a continuous control strategy by combining a second-order mode and integral siding surface is proposed as a possible solution to this problem. The proposed second-order integral sliding mode control (SOISMC) law not only rejects chattering phenomenon in control input, but also guarantees the robustness of the multi-area power network, which has an effect on parametric uncertainties such as the load variations and the matched or mismatched parameter uncertainties. Moreover, the reporting of the simulation indicates that the proposed controller upholds the quality requirement by controlling with operating conditions in the larger range, rejects disturbance, reduces the transient response of frequency, eliminates the overshoot problem, and can better address load uncertainties compared to several previous control methods. The simulation results also show that the proposed SOISMC can be used for practical multi-area power network to lessen high parameter uncertainties and load disturbances.

Suggested Citation

  • Van Van Huynh & Phong Thanh Tran & Bui Le Ngoc Minh & Anh Tuan Tran & Dao Huy Tuan & Tam Minh Nguyen & Phan-Tu Vu, 2020. "New Second-Order Sliding Mode Control Design for Load Frequency Control of a Power System," Energies, MDPI, vol. 13(24), pages 1-21, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6509-:d:459496
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/24/6509/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/24/6509/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bui Le Ngoc Minh & Van Van Huynh & Tam Minh Nguyen & Yao Wen Tsai, 2018. "Decentralized Adaptive Double Integral Sliding Mode Controller for Multi-Area Power Systems," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-11, October.
    2. Adelhard Beni Rehiara & Naoto Yorino & Yutaka Sasaki & Yoshifumi Zoka, 2020. "An Adaptive Load Frequency Control Based on Least Square Method," Chapters, in: Amir Ebrahimi (ed.), Advances in Modelling and Control of Wind and Hydrogenerators, IntechOpen.
    3. Guo-Qiang Zeng & Xiao-Qing Xie & Min-Rong Chen, 2017. "An Adaptive Model Predictive Load Frequency Control Method for Multi-Area Interconnected Power Systems with Photovoltaic Generations," Energies, MDPI, vol. 10(11), pages 1-23, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anh-Tuan Tran & Bui Le Ngoc Minh & Van Van Huynh & Phong Thanh Tran & Emmanuel Nduka Amaefule & Van-Duc Phan & Tam Minh Nguyen, 2021. "Load Frequency Regulator in Interconnected Power System Using Second-Order Sliding Mode Control Combined with State Estimator," Energies, MDPI, vol. 14(4), pages 1-17, February.
    2. Mokhtar Shouran & Fatih Anayi & Michael Packianather, 2021. "The Bees Algorithm Tuned Sliding Mode Control for Load Frequency Control in Two-Area Power System," Energies, MDPI, vol. 14(18), pages 1-29, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaleem Ullah & Abdul Basit & Zahid Ullah & Sheraz Aslam & Herodotos Herodotou, 2021. "Automatic Generation Control Strategies in Conventional and Modern Power Systems: A Comprehensive Overview," Energies, MDPI, vol. 14(9), pages 1-43, April.
    2. Ana Fernández-Guillamón & Antonio Vigueras-Rodríguez & Emilio Gómez-Lázaro & Ángel Molina-García, 2018. "Fast Power Reserve Emulation Strategy for VSWT Supporting Frequency Control in Multi-Area Power Systems," Energies, MDPI, vol. 11(10), pages 1-20, October.
    3. Mahmut Temel ÖZDEMİR & Dursun ÖZTÜRK, 2017. "Comparative Performance Analysis of Optimal PID Parameters Tuning Based on the Optics Inspired Optimization Methods for Automatic Generation Control," Energies, MDPI, vol. 10(12), pages 1-19, December.
    4. Ali Dokht Shakibjoo & Mohammad Moradzadeh & Seyed Zeinolabedin Moussavi & Lieven Vandevelde, 2020. "A Novel Technique for Load Frequency Control of Multi-Area Power Systems," Energies, MDPI, vol. 13(9), pages 1-19, April.
    5. Masoud Babaei & Ahmadreza Abazari & S. M. Muyeen, 2020. "Coordination between Demand Response Programming and Learning-Based FOPID Controller for Alleviation of Frequency Excursion of Hybrid Microgrid," Energies, MDPI, vol. 13(2), pages 1-23, January.
    6. Yuemin Zheng & Jin Tao & Hao Sun & Qinglin Sun & Zengqiang Chen & Matthias Dehmer & Quan Zhou, 2021. "Load Frequency Active Disturbance Rejection Control for Multi-Source Power System Based on Soft Actor-Critic," Energies, MDPI, vol. 14(16), pages 1-17, August.
    7. Arya, Yogendra, 2019. "AGC of PV-thermal and hydro-thermal power systems using CES and a new multi-stage FPIDF-(1+PI) controller," Renewable Energy, Elsevier, vol. 134(C), pages 796-806.
    8. Minghui Yang & Chunsheng Wang & Yukun Hu & Zijian Liu & Caixin Yan & Shuhang He, 2020. "Load Frequency Control of Photovoltaic Generation-Integrated Multi-Area Interconnected Power Systems Based on Double Equivalent-Input-Disturbance Controllers," Energies, MDPI, vol. 13(22), pages 1-19, November.
    9. Arman Oshnoei & Rahmat Khezri & S. M. Muyeen, 2019. "Model Predictive-Based Secondary Frequency Control Considering Heat Pump Water Heaters," Energies, MDPI, vol. 12(3), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6509-:d:459496. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.