IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i22p5956-d445261.html
   My bibliography  Save this article

One-Step Synthesis of Highly Dispersed and Stable Ni Nanoparticles Confined by CeO 2 on SiO 2 for Dry Reforming of Methane

Author

Listed:
  • Chengyang Zhang

    (Department of Chemical Engineering, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, China
    School of Marine Engineering Equipments, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, China)

  • Renkun Zhang

    (Department of Chemical Engineering, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, China)

  • Hui Liu

    (School of Food and Pharmaceutical, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, China)

  • Qinhong Wei

    (Department of Chemical Engineering, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, China)

  • Dandan Gong

    (Department of Chemical Engineering, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, China)

  • Liuye Mo

    (Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, China)

  • Hengcong Tao

    (Department of Chemical Engineering, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, China)

  • Sha Cui

    (Department of Chemical Engineering, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, China)

  • Luhui Wang

    (Department of Chemical Engineering, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, China)

Abstract

Sintering and carbon deposition are the two main ways to deactivate Ni-based catalysts during methane reforming. Herein, a stable Ni-CeO 2 /SiO 2 (CSC) catalyst was prepared by a one-step colloidal solution combustion method (CSC) and used for dry reforming of methane. In the catalyst, the small Ni particles were confined by CeO 2 particles and highly dispersed on the surface of SiO 2 , forming a spatial confinement structure with a rich Ni-CeO 2 interface in the catalyst. The Ni-CeO 2 /SiO 2 (CSC) catalyst prepared by the one-step CSC method exhibited superior activity at 700 °C during dry reforming of methane, and the performance of the catalyst was stable after 20 h of reaction with only a small amount of carbon deposition present (1.8%). Due to the spatial confinement effect, Ni was stable and less than 5 nm during reaction. The small Ni particle size and rich Ni-CeO 2 interface reduced the rate of carbon deposition. This colloidal combustion method could be applied to prepare stable metal-based catalysts with rich metal–oxide interfaces for high-temperature reactions.

Suggested Citation

  • Chengyang Zhang & Renkun Zhang & Hui Liu & Qinhong Wei & Dandan Gong & Liuye Mo & Hengcong Tao & Sha Cui & Luhui Wang, 2020. "One-Step Synthesis of Highly Dispersed and Stable Ni Nanoparticles Confined by CeO 2 on SiO 2 for Dry Reforming of Methane," Energies, MDPI, vol. 13(22), pages 1-12, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5956-:d:445261
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/22/5956/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/22/5956/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aramouni, Nicolas Abdel Karim & Touma, Jad G. & Tarboush, Belal Abu & Zeaiter, Joseph & Ahmad, Mohammad N., 2018. "Catalyst design for dry reforming of methane: Analysis review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2570-2585.
    2. Abdulrasheed, Abdulrahman & Jalil, Aishah Abdul & Gambo, Yahya & Ibrahim, Maryam & Hambali, Hambali Umar & Shahul Hamid, Muhamed Yusuf, 2019. "A review on catalyst development for dry reforming of methane to syngas: Recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 175-193.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenjuan Yang & Mohamed Nawwar & Igor Zhitomirsky, 2022. "Facile Route for Fabrication of Ferrimagnetic Mn 3 O 4 Spinel Material for Supercapacitors with Enhanced Capacitance," Energies, MDPI, vol. 15(5), pages 1-12, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baena-Moreno, Francisco M. & Sebastia-Saez, Daniel & Pastor-Pérez, Laura & Reina, Tomas Ramirez, 2021. "Analysis of the potential for biogas upgrading to syngas via catalytic reforming in the United Kingdom," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    2. Mattia Boscherini & Alba Storione & Matteo Minelli & Francesco Miccio & Ferruccio Doghieri, 2023. "New Perspectives on Catalytic Hydrogen Production by the Reforming, Partial Oxidation and Decomposition of Methane and Biogas," Energies, MDPI, vol. 16(17), pages 1-33, September.
    3. Arslan Mazhar & Asif Hussain Khoja & Abul Kalam Azad & Faisal Mushtaq & Salman Raza Naqvi & Sehar Shakir & Muhammad Hassan & Rabia Liaquat & Mustafa Anwar, 2021. "Performance Analysis of TiO 2 -Modified Co/MgAl 2 O 4 Catalyst for Dry Reforming of Methane in a Fixed Bed Reactor for Syngas (H 2 , CO) Production," Energies, MDPI, vol. 14(11), pages 1-20, June.
    4. Li, Ziwei & Lin, Qian & Li, Min & Cao, Jianxin & Liu, Fei & Pan, Hongyan & Wang, Zhigang & Kawi, Sibudjing, 2020. "Recent advances in process and catalyst for CO2 reforming of methane," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Lim, Dongjun & Lee, Boreum & Lee, Hyunjun & Byun, Manhee & Lim, Hankwon, 2022. "Projected cost analysis of hybrid methanol production from tri-reforming of methane integrated with various water electrolysis systems: Technical and economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    6. Taherian, Zahra & Khataee, Alireza & Orooji, Yasin, 2020. "Facile synthesis of yttria-promoted nickel catalysts supported on MgO-MCM-41 for syngas production from greenhouse gases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    7. Freida Ozavize Ayodele & Siti Indati Mustapa & Bamidele Victor Ayodele & Norsyahida Mohammad, 2020. "An Overview of Economic Analysis and Environmental Impacts of Natural Gas Conversion Technologies," Sustainability, MDPI, vol. 12(23), pages 1-18, December.
    8. Al-Fatesh, Ahmed Sadeq & Hanan atia, & Ibrahim, Ahmed Aidid & Fakeeha, Anis Hamza & Singh, Sunit Kumar & Labhsetwar, Nitin K. & Shaikh, Hamid & Qasim, Shamsudeen O., 2019. "CO2 reforming of CH4: Effect of Gd as promoter for Ni supported over MCM-41 as catalyst," Renewable Energy, Elsevier, vol. 140(C), pages 658-667.
    9. Marina Arapova & Ekaterina Smal & Yuliya Bespalko & Konstantin Valeev & Valeria Fedorova & Amir Hassan & Olga Bulavchenko & Vladislav Sadykov & Mikhail Simonov, 2023. "Methane Dry Reforming Catalysts Based on Pr-Doped Ceria–Zirconia Synthesized in Supercritical Propanol," Energies, MDPI, vol. 16(12), pages 1-17, June.
    10. Toledo, Mario & Arriagada, Andrés & Ripoll, Nicolás & Salgansky, Eugene A. & Mujeebu, Muhammad Abdul, 2023. "Hydrogen and syngas production by hybrid filtration combustion: Progress and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    11. Simon P. Philbin, 2020. "Critical Analysis and Evaluation of the Technology Pathways for Carbon Capture and Utilization," Clean Technol., MDPI, vol. 2(4), pages 1-21, December.
    12. Zain, Munirah Md & Mohamed, Abdul Rahman, 2018. "An overview on conversion technologies to produce value added products from CH4 and CO2 as major biogas constituents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 56-63.
    13. Touahra, Fouzia & Chebout, Redouane & Lerari, Djahida & Halliche, Djamila & Bachari, Khaldoun, 2019. "Role of the nanoparticles of Cu-Co alloy derived from perovskite in dry reforming of methane," Energy, Elsevier, vol. 171(C), pages 465-474.
    14. Abdulrasheed, Abdulrahman & Jalil, Aishah Abdul & Gambo, Yahya & Ibrahim, Maryam & Hambali, Hambali Umar & Shahul Hamid, Muhamed Yusuf, 2019. "A review on catalyst development for dry reforming of methane to syngas: Recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 175-193.
    15. Gao, Yuchen & Jiang, Jianguo & Meng, Yuan & Aihemaiti, Aikelaimu & Ju, Tongyao & Chen, Xuejing & Yan, Feng, 2020. "A novel nickel catalyst supported on activated coal fly ash for syngas production via biogas dry reforming," Renewable Energy, Elsevier, vol. 149(C), pages 786-793.
    16. Jung, Sungyup & Lee, Jechan & Moon, Deok Hyun & Kim, Ki-Hyun & Kwon, Eilhann E., 2021. "Upgrading biogas into syngas through dry reforming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    17. Hajizadeh, Abdollah & Mohamadi-Baghmolaei, Mohamad & Cata Saady, Noori M. & Zendehboudi, Sohrab, 2022. "Hydrogen production from biomass through integration of anaerobic digestion and biogas dry reforming," Applied Energy, Elsevier, vol. 309(C).
    18. Moura, I.P. & Reis, A.C. & Bresciani, A.E. & Alves, R.M.B., 2021. "Carbon dioxide abatement by integration of methane bi-reforming process with ammonia and urea synthesis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    19. Carminati, Hudson Bolsoni & de Medeiros, José Luiz & Araújo, Ofélia de Queiroz F., 2021. "Sustainable Gas-to-Wire via dry reforming of carbonated natural gas: Ionic-liquid pre-combustion capture and thermodynamic efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    20. Fan, Liyuan & Li, Chao'en & van Biert, Lindert & Zhou, Shou-Han & Tabish, Asif Nadeem & Mokhov, Anatoli & Aravind, Purushothaman Vellayani & Cai, Weiwei, 2022. "Advances on methane reforming in solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5956-:d:445261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.