IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5564-d433971.html
   My bibliography  Save this article

Development and Validation of CFD 2D Models for the Simulation of Micro H-Darrieus Turbines Subjected to High Boundary Layer Instabilities

Author

Listed:
  • Rosario Lanzafame

    (Department of Civil Engineering and Architecture (DICAR), University of Catania, Via Santa Sofia 64, 95125 Catania, Italy)

  • Stefano Mauro

    (Department of Civil Engineering and Architecture (DICAR), University of Catania, Via Santa Sofia 64, 95125 Catania, Italy)

  • Michele Messina

    (Department of Civil Engineering and Architecture (DICAR), University of Catania, Via Santa Sofia 64, 95125 Catania, Italy)

  • Sebastian Brusca

    (Department of Engineering, University of Messina, Contrada Di Dio, 98166 Messina, Italy)

Abstract

The simulation of very small vertical axis wind turbines is often a complex task due to the very low Reynolds number effects and the strong unsteadiness related to the rotor operation. Moreover, the high boundary layer instabilities, which affect these turbines, strongly limits their efficiency compared to micro horizontal axis wind turbines. However, as the scientific interest toward micro wind turbine power generation is growing for powering small stand-alone devices, Vertical Axis Wind Turbines (VAWTs)might be very suitable for this kind of application as well. Furthermore, micro wind turbines are widely used for wind tunnel testing, as the wind tunnel dimensions are usually quite limited. In order to obtain a better comprehension of the fluid dynamics of such micro rotors, in the present paper the authors demonstrate how to develop an accurate CFD 2D model of a micro H-Darrieus wind turbine, inherently characterized by highly unstable operating conditions. The rotor was tested in the subsonic wind tunnel, owned by the University of Catania, in order to obtain the experimental validation of the numerical model. The modeling methodology was developed by means of an accurate grid and time step sensitivity study and by comparing different approaches for the turbulence closure. The hybrid LES/RANS Delayed Detached Eddy Simulation, coupled to a transition model, demonstrated superior accuracy compared to the most advanced unsteady RANS models. Therefore, the CFD 2D model developed in this work allowed for a thorough insight into the unstable fluid dynamic operating conditions of micro VAWTs, leading the way for the performance improvement of such rotors.

Suggested Citation

  • Rosario Lanzafame & Stefano Mauro & Michele Messina & Sebastian Brusca, 2020. "Development and Validation of CFD 2D Models for the Simulation of Micro H-Darrieus Turbines Subjected to High Boundary Layer Instabilities," Energies, MDPI, vol. 13(21), pages 1-23, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5564-:d:433971
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5564/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5564/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jong-Woong Park & Hyung-Jo Jung & Hongki Jo & Billie F. Spencer, 2012. "Feasibility Study of Micro-Wind Turbines for Powering Wireless Sensors on a Cable-Stayed Bridge," Energies, MDPI, vol. 5(9), pages 1-15, September.
    2. Xu, F.J. & Yuan, F.G. & Hu, J.Z. & Qiu, Y.P., 2014. "Miniature horizontal axis wind turbine system for multipurpose application," Energy, Elsevier, vol. 75(C), pages 216-224.
    3. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    4. Balduzzi, Francesco & Bianchini, Alessandro & Ferrara, Giovanni & Ferrari, Lorenzo, 2016. "Dimensionless numbers for the assessment of mesh and timestep requirements in CFD simulations of Darrieus wind turbines," Energy, Elsevier, vol. 97(C), pages 246-261.
    5. Elkhoury, M. & Kiwata, T. & Nagao, K. & Kono, T. & ElHajj, F., 2018. "Wind tunnel experiments and Delayed Detached Eddy Simulation of a three-bladed micro vertical axis wind turbine," Renewable Energy, Elsevier, vol. 129(PA), pages 63-74.
    6. Majid Bastankhah & Fernando Porté-Agel, 2017. "A New Miniature Wind Turbine for Wind Tunnel Experiments. Part II: Wake Structure and Flow Dynamics," Energies, MDPI, vol. 10(7), pages 1-19, July.
    7. Rezaeiha, Abdolrahim & Kalkman, Ivo & Blocken, Bert, 2017. "CFD simulation of a vertical axis wind turbine operating at a moderate tip speed ratio: Guidelines for minimum domain size and azimuthal increment," Renewable Energy, Elsevier, vol. 107(C), pages 373-385.
    8. Balduzzi, Francesco & Bianchini, Alessandro & Maleci, Riccardo & Ferrara, Giovanni & Ferrari, Lorenzo, 2016. "Critical issues in the CFD simulation of Darrieus wind turbines," Renewable Energy, Elsevier, vol. 85(C), pages 419-435.
    9. Li, Chao & Xiao, Yiqing & Xu, You-lin & Peng, Yi-xin & Hu, Gang & Zhu, Songye, 2018. "Optimization of blade pitch in H-rotor vertical axis wind turbines through computational fluid dynamics simulations," Applied Energy, Elsevier, vol. 212(C), pages 1107-1125.
    10. Majid Bastankhah & Fernando Porté-Agel, 2017. "A New Miniature Wind Turbine for Wind Tunnel Experiments. Part I: Design and Performance," Energies, MDPI, vol. 10(7), pages 1-19, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giovanni Ferrara & Alessandro Bianchini, 2021. "Special Issue “Numerical Simulation of Wind Turbines”," Energies, MDPI, vol. 14(6), pages 1-2, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert, 2019. "On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines," Energy, Elsevier, vol. 180(C), pages 838-857.
    2. Muhammad Saif Ullah Khalid & David Wood & Arman Hemmati, 2022. "Self-Starting Characteristics and Flow-Induced Rotation of Single- and Dual-Stage Vertical-Axis Wind Turbines," Energies, MDPI, vol. 15(24), pages 1-19, December.
    3. Jinghua Lin & You-Lin Xu & Yong Xia & Chao Li, 2019. "Structural Analysis of Large-Scale Vertical-Axis Wind Turbines, Part I: Wind Load Simulation," Energies, MDPI, vol. 12(13), pages 1-31, July.
    4. Hand, Brian & Kelly, Ger & Cashman, Andrew, 2021. "Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    5. Liu, Qingsong & Miao, Weipao & Ye, Qi & Li, Chun, 2022. "Performance assessment of an innovative Gurney flap for straight-bladed vertical axis wind turbine," Renewable Energy, Elsevier, vol. 185(C), pages 1124-1138.
    6. Wong, Kok Hoe & Chong, Wen Tong & Poh, Sin Chew & Shiah, Yui-Chuin & Sukiman, Nazatul Liana & Wang, Chin-Tsan, 2018. "3D CFD simulation and parametric study of a flat plate deflector for vertical axis wind turbine," Renewable Energy, Elsevier, vol. 129(PA), pages 32-55.
    7. Franchina, N. & Kouaissah, O. & Persico, G. & Savini, M., 2022. "Three-dimensional modeling and investigation of the flow around a troposkein vertical axis wind turbine at different operating conditions," Renewable Energy, Elsevier, vol. 199(C), pages 368-381.
    8. Cinzia Rainone & Danilo De Siero & Luigi Iuspa & Antonio Viviani & Giuseppe Pezzella, 2023. "A Numerical Procedure for Variable-Pitch Law Formulation of Vertical-Axis Wind Turbines," Energies, MDPI, vol. 16(1), pages 1-20, January.
    9. Hand, Brian & Cashman, Andrew, 2018. "Aerodynamic modeling methods for a large-scale vertical axis wind turbine: A comparative study," Renewable Energy, Elsevier, vol. 129(PA), pages 12-31.
    10. Elie Antar & Amne El Cheikh & Michel Elkhoury, 2019. "A Dynamic Rotor Vertical-Axis Wind Turbine with a Blade Transitioning Capability," Energies, MDPI, vol. 12(8), pages 1-21, April.
    11. Liu, Jian & Zhu, Wenqing & Xiao, Zhixiang & Sun, Haisheng & Huang, Yong & Liu, Zhitao, 2018. "DDES with adaptive coefficient for stalled flows past a wind turbine airfoil," Energy, Elsevier, vol. 161(C), pages 846-858.
    12. Tristan Revaz & Mou Lin & Fernando Porté-Agel, 2020. "Numerical Framework for Aerodynamic Characterization of Wind Turbine Airfoils: Application to Miniature Wind Turbine WiRE-01," Energies, MDPI, vol. 13(21), pages 1-18, October.
    13. Mauro, S. & Brusca, S. & Lanzafame, R. & Messina, M., 2019. "CFD modeling of a ducted Savonius wind turbine for the evaluation of the blockage effects on rotor performance," Renewable Energy, Elsevier, vol. 141(C), pages 28-39.
    14. Zanforlin, Stefania & Deluca, Stefano, 2018. "Effects of the Reynolds number and the tip losses on the optimal aspect ratio of straight-bladed Vertical Axis Wind Turbines," Energy, Elsevier, vol. 148(C), pages 179-195.
    15. Francesco Mazzeo & Derek Micheletto & Alessandro Talamelli & Antonio Segalini, 2022. "An Experimental Study on a Wind Turbine Rotor Affected by Pitch Imbalance," Energies, MDPI, vol. 15(22), pages 1-16, November.
    16. Öztürk, Buğrahan & Hassanein, Abdelrahman & Akpolat, M Tuğrul & Abdulrahim, Anas & Perçin, Mustafa & Uzol, Oğuz, 2023. "On the wake characteristics of a model wind turbine and a porous disc: Effects of freestream turbulence intensity," Renewable Energy, Elsevier, vol. 212(C), pages 238-250.
    17. Lidong Zhang & Kaiqi Zhu & Junwei Zhong & Ling Zhang & Tieliu Jiang & Shaohua Li & Zhongbin Zhang, 2018. "Numerical Investigations of the Effects of the Rotating Shaft and Optimization of Urban Vertical Axis Wind Turbines," Energies, MDPI, vol. 11(7), pages 1-25, July.
    18. Dong, Xinghui & Li, Jia & Gao, Di & Zheng, Kai, 2021. "Wind speed modeling for cascade clusters of wind turbines Part 2: Wind speed reduction and aggregation superposition," Energy, Elsevier, vol. 215(PB).
    19. Ruiwen Zhao & Angus C. W. Creech & Alistair G. L. Borthwick & Vengatesan Venugopal & Takafumi Nishino, 2020. "Aerodynamic Analysis of a Two-Bladed Vertical-Axis Wind Turbine Using a Coupled Unsteady RANS and Actuator Line Model," Energies, MDPI, vol. 13(4), pages 1-26, February.
    20. He, Ruiyang & Sun, Haiying & Gao, Xiaoxia & Yang, Hongxing, 2022. "Wind tunnel tests for wind turbines: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5564-:d:433971. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.